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A B S T R A C T

Some new upper and lower bounds for the upper incomplete gamma function 𝛤 (𝑎, 𝑥) are
presented. Some of the bounds are given for all real 𝑥 > 0 and some are for only certain
combinations of 𝑎 and 𝑥. A number of different methods are used to obtain these new bounds.
In particular, rational function and perturbations of rational function bounds are presented.
Some numerical comparisons are made with previously proposed bounds.

. Preliminary results and bounds

Let 𝑥 and 𝑎 be real numbers with 𝑥 > 0. Then the upper incomplete gamma function is given by

𝛤 (𝑎, 𝑥) = ∫

∞

𝑥
𝑡𝑎−1𝑒−𝑡𝑑 𝑡. (1)

he lower incomplete gamma function is
𝛾(𝑎, 𝑥) = ∫

𝑥

0
𝑡𝑎−1𝑒−𝑡𝑑 𝑡. (2)

learly, 𝛤 (𝑎, 𝑥) + 𝛾(𝑎, 𝑥) = 𝛤 (𝑎) = ∫ ∞
0 𝑡𝑎−1𝑒−𝑡𝑑 𝑡, the gamma function. We shall be primarily concerned with new upper and lower

ounds on the upper incomplete gamma function (referred to from now on as just the incomplete gamma function). However, any
pper (lower) bounds on 𝛤 (𝑎, 𝑥) will give us a lower (upper) bound on 𝛾(𝑎, 𝑥) upon subtraction from 𝛤 (𝑎) if desired.

Before presenting the new bounds, we present some needed results and some previously proposed bounds for 𝛤 (𝑎, 𝑥), especially
hese bounds given in [1]. Let

𝑏𝑎 =

{

𝛤 (𝑎 + 1)1∕(𝑎−1) 𝑖𝑓 𝑎 ∈ (−1,∞)∖{1},
𝑒1−𝛾 𝑖𝑓 𝑎 = 1,

here 𝛾 = 0.577⋯ is the Euler’s constant. Let

𝐺𝑎(𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥−2𝑒−𝑥 𝑖𝑓 𝑎 = −1,
(𝑥 + 𝑏𝑎)𝑎 − 𝑥𝑎

𝑎𝑏𝑎
𝑒−𝑥 𝑖𝑓 𝑎 ∈ (−1,∞)∖{0},

𝑒−𝑥 ln
( 𝑥+1

𝑥

)

𝑖𝑓 𝑎 = 0.
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𝐵

f

Let

𝑔𝑎(𝑥) =
(

(𝑥 + 2)𝑎 − 𝑥𝑎 − 2𝑎
2𝑎

+ 𝛤 (𝑎)
)

𝑒−𝑥, 𝑎 > 0. (3)

Many of the bounds given in [1] are based on 𝐺𝑎(𝑥) and 𝑔𝑎(𝑥) or their ‘forward’ or ‘backward’ shift variants. For any bound 𝐵𝑎(𝑥)
n 𝛤 (𝑎, 𝑥), we can obtain new bounds on 𝛤 (𝑎, 𝑥) using the forward 𝑘− shift:

𝐵𝑎;𝑘(𝑥) = 𝑥𝑎−1𝑒−𝑥
𝑘−1
∑

𝑗=0
(𝑎 − 1)𝑗𝑥−𝑗 + (𝑎 − 1)𝑘𝐵𝑎−𝑘(𝑥), (4)

where (𝑎 − 1)𝑗 =
∏𝑗−1

𝑖=0 (𝑎 − 1 − 𝑖) is the 𝑗th falling factorial of 𝑎 − 1. Clearly, a bound on 𝛤 (𝑎, 𝑥) can be obtained using a bound
on 𝛤 (𝑎 − 𝑘, 𝑥). The bound type may change if (𝑎 − 1)𝑘 < 0, however. See [1], p. 4–5 for details. Thus, in fact, it suffices to obtain
bounds only for 0 < 𝑎 < 1, if the forward shift relation (4) is used. The bounds given in [1] are exact since 𝐵𝑎(𝑥) ∼𝑥↓0

𝛤 (𝑎, 𝑥) and

𝑎(𝑥) ∼𝑥→∞
𝛤 (𝑎, 𝑥) for most bound choices 𝐵𝑎(𝑥) constructed in [1]. This will not be the case for many of the new bounds presented

in this paper. However, the rational function bounds and their perturbed versions will be exact in one way in that 𝐵𝑎(𝑥) ∼𝑥→∞
𝛤 (𝑎, 𝑥)

or these new bounds. Moreover, for ‘intermediate’ values of 𝑥 > 0, the new bounds can be improvements on some of the bounds
given in [1] for certain choices of 𝑎 and 𝑥.

For other previously proposed bounds on 𝛤 (𝑎, 𝑥) and other works relevant to this paper, see the research works: [2–7], and [8].
Next, we present the bounds of Pinelis [1] most relevant to the results to be presented later in Sections 2–3.

Theorem 1.1 (Proposition 2.7 of Pinelis [1]). Let 𝑎 ≥ 1 be real. Then

𝛤 (𝑎, 𝑥) ≥ 𝑥𝑎−1𝑒−𝑥, (5)

for 𝑥 > 0 and

𝛤 (𝑎, 𝑥) ≤ 𝑥𝑎−1𝑒−𝑥

1 −
(

𝑎−1
𝑥

) , for 𝑥 > 𝑎 − 1. (6)

Theorem 1.2 (Proposition 2.8 of Pinelis [1]). Let 𝑎 < 1 be real. Let

𝑔𝑙 𝑜𝑎;2(𝑥) = 𝑥𝑎𝑒−𝑥
(

𝑥 + 3 − 𝑎
𝑥2 + (4 − 2𝑎)𝑥 + (𝑎 − 1)(𝑎 − 2)

)

. (7)

Then

𝛤 (𝑎, 𝑥) > 𝑔𝑙 𝑜𝑎;2(𝑥). (8)

Theorem 1.3 (Theorem 1.2 of Pinelis [1]). Let 𝑎 < −1 be real. Then for 𝑥 > 0,

𝑔𝑙 𝑜𝑎 (𝑥) < 𝛤 (𝑎, 𝑥) < 𝑔𝑢𝑝𝑎 (𝑥), (9)

where

𝑔𝑙 𝑜𝑎 (𝑥) = 𝑥𝑎𝑒−𝑥
(

𝑥 − 𝑎 − 1
(𝑥 − 𝑎)2 + 𝑎

)

, (10)

and

𝑔𝑢𝑝𝑎 (𝑥) = 𝑥𝑎𝑒−𝑥
( 1
𝑥 − 𝑎

)

. (11)

Theorem 1.4 (Theorem 1.1 of Pinelis [1]). Let 𝑎 ≥ −1 be real. Then for 𝑥 > 0,
𝛤 (𝑎, 𝑥) < 𝐺𝑎(𝑥) if − 1 ⩽ 𝑎 < 1,
𝑔𝑎(𝑥) = 𝐺𝑎(𝑥) = 𝛤 (𝑎, 𝑥) = 𝑒−𝑥 if 𝑎 = 1,
𝑔𝑎(𝑥) < 𝐺𝑎(𝑥) < 𝛤 (𝑎, 𝑥) if 1 < 𝑎 < 2,
𝑔𝑎(𝑥) = 𝐺𝑎(𝑥) = 𝛤 (𝑎, 𝑥) = 𝑒−𝑥(1 + 𝑥) if 𝑎 = 2,
𝛤 (𝑎, 𝑥) < 𝑔𝑎(𝑥) < 𝐺𝑎(𝑥) if 2 < 𝑎 < 3,
𝛤 (𝑎, 𝑥) = 𝑔𝑎(𝑥) = 𝑒−𝑥

(

2 + 2𝑥 + 𝑥2
)

< 𝐺𝑎(𝑥) if 𝑎 = 3,
𝑔𝑎(𝑥) < 𝛤 (𝑎, 𝑥) < 𝐺𝑎(𝑥) if 𝑎 > 3.

(12)

Theorem 1.5 (Proposition 2.11 of Pinelis [1]). Let 𝑎 < 0 be real. Let

𝑔𝑙 𝑜𝑎;1(𝑥) = 𝑥𝑎𝑒−𝑥
(

1 − 𝑎 + 𝑥
(𝑥 − 𝑎)2 − 𝑎 + 2𝑥

)

. (13)

Then

𝛤 (𝑎, 𝑥) < 𝑔𝑙 𝑜𝑎;1(𝑥) < 𝑔𝑢𝑝𝑎 (𝑥), (14)

where 𝑔𝑢𝑝𝑎 (𝑥) is given in (11).
2
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Theorem 1.6 (Proposition 2.10 of Pinelis [1]). Let 1 < 𝑎 < 3. Let

𝐺𝑎;1(𝑥) = 𝑥𝑎−1𝑒−𝑥 + (𝑎 − 1)𝐺𝑎−1(𝑥). (15)

Then
𝛤 (𝑎, 𝑥) < 𝐺𝑎;1(𝑥) if 1 < 𝑎 < 2,

𝛤 (𝑎, 𝑥) = 𝐺𝑎;1(𝑥) if 𝑎 = 2,
𝛤 (𝑎, 𝑥) > 𝐺𝑎;1(𝑥) if 2 < 𝑎 < 3.

(16)

Theorem 1.7 (Proposition 2.9 of Pinelis [1]). Let

𝐺𝑎;−1(𝑥) = 1
𝑎
(

𝐺𝑎+1(𝑥) − 𝑥𝑎𝑒−𝑥
)

. (17)

Then for 𝑥 > 0,

𝛤 (𝑎, 𝑥) > 𝐺𝑎;−1(𝑥), (18)

As discussed earlier, many new bounds can be given using the forward or backward 𝑘−shift. For example, using (17), the bound
𝐺𝑎;6(𝑥) can be found using 𝐵𝑎(𝑥) = 𝐺𝑎(𝑥) with the forward 𝑘 = 6 shift to get

𝐺𝑎;6(𝑥) = 𝑥𝑎−1𝑒−𝑥
5
∑

𝑗=0
(𝑎 − 1)𝑗𝑥−𝑗 + (𝑎 − 1)𝑘𝐺𝑎−6(𝑥), (19)

which is a bound used in Figure 1 of Pinelis [1] in the numerical graphical comparisons of signed relative errors of bounds. Now
we are ready to give some new bounds for the incomplete gamma function.

2. Main results

Theorem 2.1. For all real 𝑎 and 𝑥 > 0, let

𝐻(𝑎, 𝑥) = 𝛤 (𝑎, 𝑥)
𝑥𝑎−1𝑒−𝑥

=
∫ ∞
𝑥 𝑡𝑎−1𝑒−𝑡𝑑 𝑡
𝑥𝑎−1𝑒−𝑥

. (20)

Then 𝐻(𝑎, 𝑥) is a log convex function of 𝑎 for 𝑥 > 0.

Proof. From the definition of 𝐻(𝑎, 𝑥) given in (20) a change of variable gives

𝐻(𝑎, 𝑥) = ∫

∞

0

(

1 + 𝑢
𝑥

)𝑎−1
𝑒−𝑢𝑑 𝑢, (21)

Differentiating (21) with respect to 𝑎 twice gives
𝛥 = 𝐻(𝑎, 𝑥)𝐻 ′′(𝑎, 𝑥) − (

𝐻 ′(𝑎, 𝑥))2

=
(

∫

∞

0

(

1 + 𝑢1
𝑥

)𝑎−1
𝑒−𝑢1𝑑 𝑢1

) (
∫

∞

0

(

1 + 𝑢2
𝑥

)𝑎−1
)

(

log
(

1 + 𝑢2
𝑥

))2
𝑒−𝑢2𝑑 𝑢2

−
(

∫

∞

0

(

1 + 𝑢1
𝑥

)𝑎−1
⋅ log

(

1 + 𝑢1
𝑥

)

𝑒−𝑢1𝑑 𝑢1
)

⋅
(

∫

∞

0

(

1 + 𝑢2
𝑥

)𝑎−1
log

(

1 + 𝑢2
𝑥

)

𝑒−𝑢2𝑑 𝑢2
)

,

(22)

After some algebra and combining integrands, we get

𝛥 = ∫

∞

0 ∫

∞

0

1
2
(𝑐1 − 𝑐2)2𝑒−𝑢1𝑒−𝑢2

(

1 + 𝑢1
𝑥

)𝑎−1 (
1 + 𝑢2

𝑥

)𝑎−1
𝑑 𝑢1𝑑 𝑢2, (23)

where 𝑐1 = log
(

1 + 𝑢1
𝑥

)

and 𝑐2 = log
(

1 + 𝑢2
𝑥

)

. Clearly, (23) is nonnegative which gives 𝐻 ′(𝑎, 𝑥)
𝐻(𝑎, 𝑥) is increasing in 𝑎 which is equivalent

o 𝐻(𝑎, 𝑥) is log convex function of 𝑎 for all 𝑥 > 0. This completes the proof. ■

Next, we give an interpolatory type of upper bound on 𝛤 (𝑎, 𝑥) using Theorem 2.1.

Theorem 2.2. Let 𝑎 ≥ 1 and 𝑥 > 0. Let 𝑚 = ⌊𝑎⌋ be the floor function value of 𝑎. Then

𝛤 (𝑎, 𝑥) ≤ 𝑡𝑎−1𝑒−𝑡 ⋅ [𝐻(𝑚)]1−(𝑎−𝑚) ⋅ [𝐻(𝑚 + 1)]𝑎−𝑚 ⋅ 𝑒[1−(𝑎−𝑚)]𝑦𝑚+(𝑎−𝑚)𝑦𝑚+1 (24)

where

𝐻(𝑚) =
𝑚−1
∑

𝑗=0

(𝑚 − 1)!
(𝑚 − 1 − 𝑗)!

( 1
𝑥

)𝑗
= 𝐻(𝑚, 𝑥), and 𝑦𝑚 = log𝐻(𝑚), (25)
3
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Proof. From the definition of 𝐻(𝑎, 𝑥) given in (20) with 𝑎 = 𝑚, we get, using binomial expansions:

𝐻(𝑚 + 1) = ∫

∞

0

(

1 + 𝑢
𝑥

)𝑚
𝑒−𝑢𝑑 𝑢 =

𝑚
∑

𝑗=0

𝑚!
(𝑚 − 𝑗)!

( 1
𝑥

)𝑗
. (26)

Since log𝐻(𝑎, 𝑥) is concave in 𝑎, a linear interpolation in 𝑎 will produce an overestimate of log𝐻(𝑎, 𝑥) when interpolating at the
points (𝑚, log𝐻(𝑚, 𝑥)) and (𝑚 + 1, log𝐻(𝑚 + 1, 𝑥)). Thus for 𝑚 ≤ 𝑎 ≤ 𝑚 + 1,

log𝐻(𝑎, 𝑥) ≤ 𝑦𝑚 + (𝑦𝑚+1 − 𝑦𝑚)(𝑎 − 𝑚)

= [1 − (𝑎 − 𝑚)]𝑦𝑚 + (𝑎 − 𝑚)𝑦𝑚+1.
(27)

Exponentiation of (27) gives,

𝐻(𝑎, 𝑥) ≤ 𝑒[1−(𝑎−𝑚)]𝑦𝑚+(𝑎−𝑚)𝑦𝑚+1
(

𝐻(𝑚)
)1−(𝑎−𝑚)(𝐻(𝑚 + 1))𝑎−𝑚, (28)

From the definition of 𝐻(𝑎, 𝑥), (24) follows immediately. This completes the proof. ■

Theorem 2.3 (Theorem 4.3 of Fagiuoli and Pellerey [9]). Suppose 𝑈 is a random variable having a new better than used in expectation
(NBUE) distribution. Let ℎ(𝑢) be a convex function of 𝑢 with ℎ(0) ≤ 0. Then

𝐸
[

ℎ(𝑈 )
]

≤ 𝐸(𝑈 ) ⋅ 𝐸(ℎ′(𝑈 )). (29)

From Theorem 2.3 above, we can prove the following result.

Theorem 2.4. Suppose 𝑎 < 1 and 𝑥 > 0. Then

𝛤 (𝑎, 𝑥) ≤
( 𝑥 + 1
𝑥 + 2 − 𝑎

)

⋅
(

𝑥𝑎−1𝑒−𝑥
)

. (30)

Proof. From the definition of 𝐻(𝑎, 𝑥),
𝐻(𝑎, 𝑥) =

( 1
𝑥

)𝑎−1

∫

∞

0

1
(𝑢 + 𝑥)1−𝑎

𝑒−𝑢𝑑 𝑢. (31)

Let

ℎ(𝑢) = 1
(𝑢 + 𝑥)1−𝑎

− 1
𝑥1−𝑎

. (32)

Then ℎ(0) = 0. Also, ℎ(𝑢) is convex function of 𝑢 ≥ 0 for all 𝑥 > 0. In addition, the function

𝑓1(𝑢) = (𝑢 + 𝑥)ℎ′(𝑢) = 𝑎 − 1
(𝑢 + 𝑥)1−𝑎

, (33)

is increasing in 𝑢 for 𝑥 > 0. From (31), we can write

𝐻(𝑎, 𝑥) = 𝐸
[

1
(𝑈 + 𝑥)1−𝑎

]

⋅
( 1
𝑥

)𝑎−1
, (34)

where 𝑈 has an exponential distribution, which is an NBUE distribution with mean 1 and probability density function 𝑒−𝑢, 𝑢 ≥ 0.
hus, Theorem 2.3 gives

𝐸
[

ℎ(𝑈 )
]

= 𝐸
[

1
(𝑈 + 𝑥)1−𝑎

− 1
𝑥1−𝑎

]

≤ 𝐸(𝑈 ) ⋅ 𝐸(ℎ′(𝑈 ))

= 𝐸(ℎ′(𝑈 )), since 𝐸(𝑈 ) = 1.
(35)

Since 𝑓1(𝑢) = (𝑢 + 𝑥)ℎ′(𝑢) is increasing in 𝑢 and 1
𝑢 + 𝑥

is decreasing in 𝑢, standard covariance inequalities give

𝐸[ℎ(𝑈 )] ≤ 𝐸(ℎ′(𝑈 )) = 𝐸
[

(𝑈 + 𝑥)ℎ′(𝑈 ) ⋅
( 1
𝑈 + 𝑥

)

]

≤ 𝐸[(𝑈 + 𝑥)ℎ′(𝑈 )] ⋅ 𝐸
[

1
𝑈 + 𝑥

]

.
(36)

Since ℎ′(𝑢) = 𝑎 − 1
(𝑢 + 𝑥)2−𝑎

, we get

𝐸
(

1
(𝑈 + 𝑥)1−𝑎

)

≤
( 1
𝑥

)1−𝑎
(𝑎 − 1)𝐸

[

1
(𝑈 + 𝑥)1−𝑎

]

⋅ 𝐸
[

1
𝑈 + 𝑥

]

. (37)

Solving for 𝐸
[

1
(𝑈 + 𝑥)1−𝑎

]

in (37), we get

𝐸
[

1
(𝑈 + 𝑥)1−𝑎

]

≤

( 1
𝑥

)1−𝑎

1 − 𝑎
. (38)
4

1 +
1 + 𝑥
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𝑥

From (34), and (38), we get

𝐻(𝑎, 𝑥) =
( 1
𝑥

)1−𝑎
𝐸
[

1
(𝑈 + 𝑥)1−𝑎

]

≤ 1

1 + 1 − 𝑎
1 + 𝑥

= 𝑥 + 1
𝑥 + 2 − 𝑎

.

(39)

From the definition of 𝐻(𝑎, 𝑥), we get

𝛤 (𝑎, 𝑥) ≤
( 𝑥 + 1
𝑥 + 2 − 𝑎

)

⋅
(

𝑥𝑎−1𝑒−𝑥
)

, the desired result. (40)

This completes the proof. ■

Recall that Theorem 1.1 (Proposition 2.7 of Pinelis [1]) stated that

𝛤 (𝑎, 𝑥) ≤ 𝑥𝑎−1𝑒−𝑥

(1 − (𝑎 − 1)∕𝑥) , for all real 𝑎 ≥ 1 and all real 𝑥 > 𝑎 − 1. (41)

Let us re-derive this in another way which leads to some new bounds for 𝛤 (𝑎, 𝑥). In particular, we shall get an extension
f Theorem 1.5 (Proposition 2.11 of Pinelis [1]) which states that

𝛤 (𝑎, 𝑥) > 𝑔𝑙 𝑜𝑎;1(𝑥) =
𝑥𝑎𝑒−𝑥(1 − 𝑎 + 𝑥)
(𝑥 − 𝑎)2 − 𝑎 + 2𝑥 , (42)

for 𝑎 ≥ 2 and 𝑥 > 𝑎− 1. Note that (42) has the inequality sign going the other way since 𝛤 (𝑎, 𝑥) < 𝑔𝑙 𝑜𝑎;1(𝑥) holds instead for 𝑎 < 0 and
 > 0. Let

𝐺(𝑥) = 𝐻(𝑎, 𝑥) = ∫ ∞
𝑥 𝑡𝑎−1𝑒−𝑡𝑑 𝑡
𝑥𝑎−1𝑒−𝑥

, (43)

emphasizing the dependence of 𝐻(𝑎, 𝑥) on 𝑥 instead. Then computing 𝐺′(𝑥) and 𝐺′′(𝑥) the first two derivatives of 𝐺(𝑥), we get

𝐺′(𝑥) =
(

1 −
(𝑎 − 1

𝑥

))

𝐺(𝑥) − 1. (44)

But from (43), we also have

𝐺(𝑥) = ∫

∞

0

(

1 + 𝑢
𝑥

)𝑎−1
𝑒−𝑢, (45)

which gives

𝐺′(𝑥) = ∫

∞

0
(𝑎 − 1)

(

1 + 𝑢
𝑥

)𝑎−1
(

−𝑢
𝑥2

)

𝑒−𝑢𝑑 𝑢 < 0. (46)

From (46), we get, after using (44), that for 𝑎 ≥ 1,
(

1 −
(𝑎 − 1

𝑥

))

𝐺(𝑥) − 1 < 0, if 𝑥 > 𝑎 − 1 (47)

which gives for 𝑎 ≥ 1 that

𝐺(𝑥) < 1

1 −
(𝑎 − 1

𝑥

)
, 𝑥 > 𝑎 − 1 (48)

and also that

𝛤 (𝑎, 𝑥) < 𝑥𝑎−1𝑒−𝑥

1 −
(𝑎 − 1

𝑥

)
, 𝑥 > 𝑎 − 1. (49)

which is part of Proposition 2.7 of Pinelis [1]. Differentiating once more, we get

𝐺′′(𝑥) = ∫

∞

0

[

(𝑎 − 1)
(

1 + 𝑢
𝑥

)𝑎−2
⋅
2𝑢
𝑥3

+
(

−𝑢
𝑥2

)

(𝑎 − 1)(𝑎 − 2)
(

1 + 𝑢
𝑥

)𝑎−3
]

𝑒−𝑢𝑑 𝑢 ≥ 0, if 𝑎 ≥ 2. (50)

Also, from (50), we get

𝐺′′(𝑥) =
[

(

1 −
(𝑎 − 1

𝑥

))2
+
(

𝑎 − 1
𝑥2

)]

⋅ 𝐺(𝑥) −
(

1 −
(𝑎 − 1

𝑥

))

. (51)

Thus, for 𝑥 > 𝑎 − 1, we get

𝐺(𝑥) >
1 −

(𝑎 − 1
𝑥

)

(

1 −
(𝑎 − 1))2

+
(

𝑎 − 1)
. (52)
5
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From the definition of 𝐻(𝑎, 𝑥), we get

𝛤 (𝑎, 𝑥) > 𝑥𝑎−1𝑒−𝑥
⎛

⎜

⎜

⎜

⎜

⎝

1 −
(𝑎 − 1

𝑥

)

(

1 −
(𝑎 − 1

𝑥

))2
+
(

𝑎 − 1
𝑥2

)

⎞

⎟

⎟

⎟

⎟

⎠

=
𝑥𝑎𝑒−𝑥(1 − 𝑎 + 𝑥)
(𝑥 − 𝑎)2 − 𝑎 + 2𝑥 = 𝑔𝑙 𝑜𝑎;1(𝑥).

(53)

Thus, Theorem 2.5 below holds.

Theorem 2.5. Suppose 𝑎 ≥ 2 and 𝑥 > 𝑎 − 1. Then

𝛤 (𝑎, 𝑥) > 𝑥𝑎𝑒−𝑥(1 − 𝑎 + 𝑥)
(𝑥 − 𝑎)2 − 𝑎 + 2𝑥 = 𝑔𝑙 𝑜𝑎;1(𝑥). (54)

Theorem 2.6. Let 𝑎 be real and 𝑥 > 𝑎 be real. Let

𝑀1(𝑎, 𝑥) = 𝑥𝑎−1𝑒−𝑥
⎛

⎜

⎜

⎜

⎝

𝑥 −
(

1 + 2
𝑥

)𝑎−1

𝑥 − 𝑎

⎞

⎟

⎟

⎟

⎠

. (55)

Then

𝛤 (𝑎, 𝑥) ≤ 𝑀1(𝑎, 𝑥) if 𝑎 ≥ 2, (56)

𝛤 (𝑎, 𝑥) ≥ 𝑀1(𝑎, 𝑥) if 1 ≤ 𝑎 < 2, (57)

and

𝛤 (𝑎, 𝑥) ≤ 𝑀1(𝑎, 𝑥) if 𝑎 < 1. (58)

Proof. Since

𝐺(𝑥) = ∫

∞

0

(

1 + 𝑢
𝑥

)𝑎−1
𝑒−𝑢𝑑 𝑢, (59)

𝑅(𝑥) = 𝐺(𝑥)
𝑥

= ∫

∞

0
(1 + 𝑢)𝑎−1𝑒−𝑥𝑢𝑑 𝑢, (60)

which gives

−𝑅′(𝑥) = 1
𝑥2 ∫

∞

0
(𝑢 + 1)𝑎−1[𝑥2𝑢𝑒−𝑥𝑢]𝑑 𝑢 < 0. (61)

The expression in brackets of (61) is a probability density function. For 𝑎 ≥ 2 or 𝑎 ≤ 1, (𝑢ℎ)𝑎−1 is convex function of 𝑢 ≥ 0. So
ensen’s inequality gives,

−𝑅′(𝑥) ≥ 1
𝑥2

(

1 + 2
𝑥

)𝑎−1
. (62)

Since

𝑅′(𝑥) =
(𝑥 − 𝑎

𝑥

)

𝑅(𝑥) − 1
𝑥
, (63)

we get

(𝑥 − 𝑎
𝑥

)

𝑅(𝑥) < 1
𝑥
−

(

1 + 2
𝑥

)𝑎−1

𝑥2
,

(64)

which gives for 𝑥 > 𝑎,

𝑅(𝑥) < 1
𝑥 − 𝑎

⎛

⎜

⎜

⎜

⎝

1 −

(

1 + 2
𝑥

)𝑎−1

𝑥

⎞

⎟

⎟

⎟

⎠

. (65)

By the definition of 𝑅(𝑥), this leads to (56) and (58). Simply reverse the inequality sign to prove (59) using concavity instead of
onvexity. This completes the proof. ■

Remark 1. Note that when 𝑎 = 1 or 𝑎 = 2 in Theorem 2.6, equality holds. Thus, 𝛤 (𝑎, 𝑥) = 𝑀1(𝑎, 𝑥) in these cases.
6
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Next, let us construct rational function approximations to 𝛤 (𝑎, 𝑥) and then investigate conditions under which these approxima-
tions are upper or lower bounds for 𝛤 (𝑎, 𝑥). Since

𝐺(𝑥) = 𝐻(𝑎, 𝑥) = ∫ ∞
𝑥 𝑡𝑎−1𝑒−𝑡𝑑 𝑡
𝑥𝑎−1𝑒−𝑥

, (66)

from (44) differentiation of 𝐺(𝑥) with respect to 𝑥 gives

𝐺′(𝑥) =
(

1 −
(𝑎 − 1

𝑥

))

𝐺(𝑥) − 1. (67)

Let 𝑅(𝑥) = 𝐺(𝑥)
𝑥

, 𝑥 > 0. Then using (67) and 𝐺(𝑥) = 𝑅(𝑥)
𝑥

, we get

𝑅′(𝑥) = 𝑥𝐺′(𝑥) − 𝐺(𝑥)
𝑥2

=
(𝑥 − 𝑎

𝑥

)

𝑅(𝑥) − 1
𝑥
. (68)

Also, 𝐺(𝑥) = 𝑥 ∫ ∞
0 (𝑢 + 1)𝑎−1𝑒−𝑥𝑢𝑑 𝑢. Thus,

𝑅(𝑥) = ∫

∞

0
(𝑢 + 1)𝑎−1𝑒−𝑥𝑢𝑑 𝑢. (69)

The derivatives of 𝑅(𝑥) are:

𝑅(𝑘)(𝑥) = (−1)𝑘 ∫
∞

0
(𝑢 + 1)𝑎−1𝑢𝑘𝑒−𝑥𝑢𝑑 𝑢, 𝑘 = 1, 2, 3,… . (70)

Thus, 𝑅(𝑘)(𝑥) > 0, if 𝑘 is even and 𝑅(𝑘)(𝑥) < 0, if 𝑘 is odd. From (70)

𝑅′(𝑥) = 𝑝1(𝑥)𝑅(𝑥) + 𝑞1(𝑥) < 0, (71)

where

𝑝1(𝑥) = 𝑥 − 𝑎
𝑥

and 𝑞1(𝑥) = −1
𝑥

. (72)

Similarly,

𝑅′′(𝑥) = 𝑝2(𝑥)𝑅(𝑥) + 𝑞2(𝑥) > 0 (73)

where

𝑝2(𝑥) = (𝑥 − 𝑎)2 + 𝑎 and 𝑞2(𝑥) = 𝑥(𝑥 − 𝑎 − 1). (74)

A simple inductive argument shows that

𝑅(𝑘)(𝑥) = 𝑝𝑘(𝑥)𝑅(𝑥) + 𝑞𝑘(𝑥), 𝑘 = 2, 3, 4,… (75)

where the {𝑝𝑘(𝑥)} and {𝑞𝑘(𝑥)} rational functions are generated recursively according to:

𝑝𝑘+1(𝑥) = 𝑝𝑘(𝑥)𝑝1(𝑥) + 𝑝′𝑘(𝑥), 𝑘 = 1, 2, 3,… (76)

and

𝑞𝑘+1(𝑥) = 𝑝𝑘(𝑥)𝑞1(𝑥) + 𝑞′𝑘(𝑥), 𝑘 = 1, 2, 3,… . (77)

Thus,

𝑅(𝑘)(𝑥) = 𝑝𝑘(𝑥)𝑅(𝑥) + 𝑞𝑘(𝑥) < 0 if 𝑘 is odd, (78)

and

𝑅(𝑘)(𝑥) = 𝑝𝑘(𝑥)𝑅(𝑥) + 𝑞𝑘(𝑥) > 0 if 𝑘 is even. (79)

Inequalities (78) and (79) can be solved to get bounds on 𝑅(𝑥), hence on 𝐺(𝑥) and 𝛤 (𝑎, 𝑥), provided we can determine, for each
alue of 𝑘, when:

𝑝𝑘(𝑥) > 0 and 𝑞𝑘(𝑥) < 0. (80)

These conditions satisfying (80) will determine the inequalities that involve 𝑥 and 𝑎 which are sufficient to give either an upper
ound or a lower bound for 𝛤 (𝑎, 𝑥). Let us list some of the 𝑝𝑘(𝑥) and 𝑞𝑘(𝑥) rational functions for 𝑘 ≤ 4:

𝑘 = 1 ∶ 𝑝1(𝑥) = 𝑥 − 𝑎
𝑎

, 𝑞1(𝑥) = −1
𝑥

(81)

𝑘 = 2 ∶ 𝑝2(𝑥) =
(𝑥 − 𝑎)2 + 𝑎

𝑥2
, 𝑞2(𝑥) =

−(𝑥 − 𝑎 − 1)
𝑥2

(82)

𝑘 = 3 ∶ 𝑝 (𝑥) = −𝑎3 + (3𝑥 − 3)𝑎2 + (−3𝑥2 + 3𝑥 − 2)𝑎 + 𝑥3
, (83a)
7
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𝑞3(𝑥) = −𝑎2 + 2𝑎𝑥 − 𝑥2 − 3𝑎 + 𝑥 − 2
𝑥3

. (83b)

𝑘 = 4 ∶ 𝑝4(𝑥) =
𝑎4 + (6 − 4𝑥)𝑎3 + (6𝑥2 − 12𝑥 + 11)𝑎2 + (−4𝑥3 + 6𝑥2 − 8𝑥 + 6)𝑎 + 𝑥4

𝑥4
, (84a)

𝑞4(𝑥) =
(−𝑥3 + (3𝑎 + 1)𝑥2 + (−3𝑎2 − 7𝑎 − 2)𝑥 + (𝑎3 + 6𝑎2 + 11𝑎 + 6))

𝑥4
. (84b)

For each value of 𝑘, we must find values of 𝑥 and 𝑎 satisfying:

𝑅(𝑥) <
−𝑞𝑘(𝑥)
𝑝𝑘(𝑥)

if 𝑘 is odd, (85)

and

𝑅(𝑥) >
−𝑞𝑘(𝑥)
𝑝𝑘(𝑥)

if 𝑘 is even. (86)

It was attempted to find an algorithm to do this which would work for all 𝑘, but this was unsuccessful. What is true is that as
𝑥 ⟶ ∞, both (85) and (86) hold. Thus, we shall examine the first several values of 𝑘 on an individual basis to obtain our next
couple of bounds for 𝛤 (𝑎, 𝑥). From the relation between 𝛤 (𝑎, 𝑥) and 𝑅(𝑥), we would then have:

𝛤 (𝑎, 𝑥) < 𝑥𝑎𝑒−𝑥
(

−𝑞𝑘(𝑥)
𝑝𝑘(𝑥)

)

as 𝑥 ⟶ ∞ if 𝑘 is odd, (87)

and

𝛤 (𝑎, 𝑥) > 𝑥𝑎𝑒−𝑥
(

−𝑞𝑘(𝑥)
𝑝𝑘(𝑥)

)

as 𝑥 ⟶ ∞ if 𝑘 is even. (88)

For 𝑘 = 1, the analysis is simple. We merely state the following theorem.

Theorem 2.7. For a real and 𝑥 > max(𝑎, 0),

𝛤 (𝑎, 𝑥) ≤ 𝑥𝑎𝑒−𝑥
(

−𝑞1(𝑥)
𝑝1(𝑥)

)

= 𝑥𝑎𝑒−𝑥 ⋅
( 1
𝑥 − 𝑎

)

.
(89)

The theorem below gives a nontrivial (positive) lower bound on 𝛤 (𝑎, 𝑥) when k = 2.

Theorem 2.8.
𝛤 (𝑎, 𝑥) > 𝑥𝑎𝑒−𝑥

(

−𝑞2(𝑥)
𝑝2(𝑥)

)

= 𝑥𝑎𝑒−𝑥
(

𝑥 − (𝑎 + 1)
(𝑥 − 𝑎)2 + 𝑎

)

,
(90)

holds if either (a) or (b) holds.

(a) 𝑎 ≥ 0 and 𝑥 > 𝑎 + 1
(b) 𝑎 < 0 and 𝑥 > max{𝑎 +

√

−𝑎, 𝑎 + 1, 0}.

Proof. From (75), 𝑅′′(𝑥) = 𝑝2(𝑥)𝑅(𝑥) + 𝑞2(𝑥) > 0 which gives

𝛤 (𝑎, 𝑥) > 𝑥𝑎𝑒−𝑥
(

−𝑞2(𝑥)
𝑝2(𝑥)

)

= 𝑥𝑎𝑒−𝑥
(

𝑥 − (𝑎 + 1)
(𝑥 − 𝑎)2 + 𝑎

)

, (91)

provided 𝑞2(𝑥) < 0 and 𝑝2(𝑥) > 0. Clearly 𝑝2(𝑥) > 0 for 𝑎 ≥ 0. If 𝑎 ≥ 0, 𝑞2(𝑥) < 0 if 𝑥 > 𝑎 + 1 and 𝑥 > 0 which gives 𝑥 > 𝑎 + 1. If 𝑎 < 0,
e require 𝑝2(𝑥) < 0 which requires either 𝑥 > 𝑎 =

√

−𝑎 or 𝑥 < 𝑎 −
√

−𝑎 < 0. The latter is impossible as 𝑥 > 0. So 𝑥 > 𝑎 +
√

−𝑎
must hold as well as 𝑥 > 𝑎 + 1 to ensure 𝑞2(𝑥) > 0 and a nontrivial lower bound for 𝑅(𝑥). Thus, if 𝑥 > max{𝑎 +

√

−𝑎, 𝑎 + 1, 0}, then
𝑅(𝑥) >

−𝑞2(𝑥)
𝑝2(𝑥)

, which gives

𝛤 (𝑎, 𝑥) > 𝑥𝑎𝑒−𝑥
(

−𝑞2(𝑥)
𝑝2(𝑥)

)

= 𝑥𝑎𝑒−𝑥
(

𝑥 − (𝑎 + 1)
(𝑥 − 𝑎)2 + 𝑎

)

. (92)

This completes the proof. ■

From (81)–(84b), we see that for 𝑘 = 1, 2, 3, 4:
𝑥𝑘𝑝𝑘(𝑥) = 𝑥𝑘 + 𝑞𝑘−1(𝑎, 𝑥) and
𝑘 𝑘−1 (93)
8
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where 𝑞𝑘−1(𝑎, 𝑥) is polynomial in 𝑥 of degree 𝑘 − 1 and ℎ𝑘−1(𝑎, 𝑥) is a polynomial in 𝑥 of degree 𝑘 − 2. This is easily proven by a
imple induction argument. Thus,

−𝑞𝑘(𝑥)
𝑝𝑘(𝑥)

∼ 1
𝑥

as 𝑥 ⟶ ∞. (94)

Also, as 𝑥 ⟶ ∞,

𝛤 (𝑎, 𝑥) < 𝑥𝑎𝑒−𝑥
(

−𝑞𝑘(𝑥)
𝑝𝑘(𝑥)

)

as 𝑥 ⟶ ∞ if 𝑘 is odd (95)

and

𝛤 (𝑎, 𝑥) > 𝑥𝑎𝑒−𝑥
(

−𝑞𝑘(𝑥)
𝑝𝑘(𝑥)

)

as 𝑥 ⟶ ∞ if 𝑘 is even. (96)

Thus. for each odd 𝑘 we must solve for a function 𝑥𝑈 (𝑎) such that

𝛤 (𝑎, 𝑥) < 𝑥𝑎𝑒−𝑥
(

−𝑞𝑘(𝑥)
𝑝𝑘(𝑥)

)

for 𝑥 > 𝑥𝑈 (𝑎). (97)

and for each even 𝑘 we must solve for a function 𝑥𝐿(𝑎) such that

𝛤 (𝑎, 𝑥) > 𝑥𝑎𝑒−𝑥
(

−𝑞𝑘(𝑥)
𝑝𝑘(𝑥)

)

for 𝑥 > 𝑥𝐿(𝑎). (98)

Often, 𝑥𝑈 (𝑎) and 𝑥𝐿(𝑎) will be the only real positive root of 𝑝𝑘(𝑥) = 0 or perhaps the largest real positive root if 𝑎 > 0. For 𝑘 = 1,
Theorem 2.7 found 𝑥𝑈 (𝑎) = max(𝑎, 0). For 𝑘 For 𝑘 = 2, 𝑥𝑈 (𝑎) = 𝑎 + 1 for real 𝑎, Theorem 2.8 found

𝑥𝐿(𝑎) =
{

𝑎 + 1 𝑖𝑓 𝑎 ≥ 0
max{𝑎 +

√

𝑎, 𝑎 + 1, 0} 𝑖𝑓 𝑎 < 0.

For arbitrary values of 𝑘 ≥ 3, to determine 𝑥𝑈 (𝑎) and 𝑥𝐿(𝑎) would be difficult. We would need to solve the inequalities 𝑝𝑘(𝑥) > 0
and 𝑞𝑘(𝑥) < 0 for 𝑥 to get 𝑥𝑈 (𝑎) and 𝑥𝐿(𝑎). This would involve finding formulas for roots (largest root) of the polynomials of arbitrary
degree 𝑘, a very challenging task. Next, we present the upper bound on 𝛤 (𝑎, 𝑥) for 𝑘 = 3 when 𝑎 > 0.

Theorem 2.9. Suppose 𝑎 > 0. Let

𝑥𝑈 (𝑎) = −2
√

𝑎 sinh
[

1
3
ar csinh

(

−1
√

𝑎

)

]

(99a)

=
3
√

𝑎 +
√

𝑎2 + 𝑎3 −
3
√

√

𝑎2 + 𝑎3 − 𝑎. (99b)

Then for 𝑥 > 𝑥𝑈 (𝑎),
𝛤 (𝑎, 𝑥) < 𝑥𝑎𝑒−𝑥

(

−𝑞3(𝑥)
𝑝3(𝑥)

)

, (100)

where 𝑝3(𝑥) and 𝑞3(𝑥) are given by (83a) and (83b), respectively. In particular, (100) holds if
𝑥 > 𝑎 + 2

3
. (101)

Proof. We apply classical methods for solving cubic polynomials. A cubic polynomial with real coefficients of the form 𝑎1𝑥3+𝑎2𝑥2+
𝑎3𝑥 + 𝑎4, 𝑎1 ≠ 0, will have a unique real root if 4𝑝3 + 27𝑞2 > 0 and 𝑝 > 0, where

𝑝 =
3𝑎1𝑎3 − 𝑎22

3𝑎21
and 𝑞 =

2𝑎32 − 9𝑎1𝑎2𝑎3 + 27𝑎21𝑎4
27𝑎31

. (102)

Applying this to the numerator of 𝑝3(𝑥) with 𝑎1 = 1, 𝑎2 = −3𝑎, 𝑎3 = 3𝑎2 + 3𝑎 and 𝑎4 = −𝑎3 − 3𝑎2 − 2𝑎. We get, after simplification,
𝑝 = 3𝑎 and 𝑞 = −2𝑎. Clearly, 𝑝 > 0. Also, the discriminant of the cubic polynomial = 4𝑝3 + 27𝑞2 = 𝑎3 + 𝑎2 > 0 since 𝑎 > 0. Thus, 𝑝3(𝑥)
has one real root and two complex roots. In the case where 4𝑝3 + 27𝑞2 > 0 and 𝑝 > 0, this single real root is given by

𝑥 =
−𝑎2
3𝑎1

+
⎛

⎜

⎜

⎝

−𝑞
2

+

√

𝑝3

27
+

𝑞2

4

⎞

⎟

⎟

⎠

1∕3

+
⎛

⎜

⎜

⎝

−𝑞
2

−

√

𝑝3

27
+

𝑞2

4

⎞

⎟

⎟

⎠

1∕3

= 𝑎 +
(

𝑎 +
√

𝑎2 + 𝑎3
)1∕3

+
(

𝑎 −
√

𝑎2 + 𝑎3
)1∕3

= 𝑎 +
(

𝑎 +
√

𝑎2 + 𝑎3
)1∕3

−
(√

𝑎2 + 𝑎3 − 𝑎
)1∕3

= −2
√

𝑎 sinh
[

1
3
ar csinh

(

−1
√

𝑎

)

]

(103)
9

= 𝑥𝑈 (𝑎).
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t

Also, it is easily verified that 𝑞3(𝑥) has no real roots and is strictly negative for 𝑎 > 0. Thus, from (103), (99a)–(99b) hold. To prove
hat (100) holds, it suffices to show that 𝑎 + 2

3
> 𝑥𝑈 (𝑎). Let 𝑐 =

√

𝑎2 + 𝑎3 + 𝑎 and 𝑑 =
√

𝑎2 + 𝑎3 − 𝑎. Then
𝑥𝑈 (𝑎) − 𝑎 = 𝑐1∕3 − 𝑑1∕3 = 𝑐 − 𝑑

𝑐2∕3𝑐1∕3 + 𝑑1∕3 + 𝑑2∕3

=

1
3
(𝑐 − 𝑑)

1
3
(

𝑐2∕3 + 𝑐1∕3𝑑1∕3 + 𝑑2∕3
)

.
(104)

Applying the arithmetic mean/geometric mean inequality to the denominator of (104), we get, since 𝑐 > 𝑑 > 0, that
1
3
(

𝑐2∕3 + 𝑐1∕3𝑑1∕3 + 𝑑2∕3
)

> (𝑐 𝑑)1∕3 = 𝑎. (105)

Thus, from (104), we get

𝑥𝑈 (𝑎) − 𝑎 < 2𝑎∕3
𝑎

= 2
3
. (106)

Thus, 𝑥𝑈 (𝑎) < 𝑎 + 2
3

holds. Note that 2
3

cannot be replaced by a smaller constant, since lim𝑎⟶∞
(

𝑥𝑈 (𝑎) − 𝑎
)

= 2
3

, by a simple
computation. This proves (100) and completes the proof of the Theorem. ■

Next, we investigate the lower bound on 𝛤 (𝑎, 𝑥) corresponding to 𝑘 = 4. This will be the last case we investigate individually.

Theorem 2.10. Suppose 𝑎 > 0. Let 𝑏1 =
5(𝑎 + 1)

3
and 𝑏2 = −22𝑎

3
− 146

27
. Let

𝑥𝐿(𝑎) =
(

𝑎 + 1
3

)

+
⎛

⎜

⎜

⎝

−𝑏2
2

+

√

𝑏31
27

+
𝑏22
4

⎞

⎟

⎟

⎠

1∕3

−
⎛

⎜

⎜

⎝

𝑏2
2

+

√

𝑏31
27

+
𝑏22
4

⎞

⎟

⎟

⎠

1∕3

. (107)

Then for 𝑥 > 𝑥𝐿(𝑎), we have

𝛤 (𝑎, 𝑥) > 𝑥𝑎𝑒−𝑥
(

−𝑞4(𝑥)
𝑝4(𝑥)

)

, (108)

where 𝑝4(𝑥) and 𝑞4(𝑥) are given by (84a) and (84b), respectively. Also

𝑥𝐿(𝑎) <
(

𝑎 + 1
3

)

+ 198𝑎 + 146
135𝑎 + 145 < 𝑎 + 161

45
. (109)

Thus, (107) holds, in particular, if 𝑥 > 𝑎 + 161
45

Proof. We shall apply standard methods for determining the nature of solutions to the quartic equation:

𝑎1𝑥
4 + 𝑎2𝑥

3 + 𝑎3𝑥
2 + 𝑎4𝑥 + 𝑎5 = 0 (110)

where the 𝑎𝑖’s are real with 𝑎1 ≠ 0. Let 𝑝 = 8𝑎1𝑎3 − 3𝑎22, 𝐷 = 64𝑎31𝑎5 − 16𝑎21𝑎23 + 16𝑎1𝑎22𝑎3 − 16𝑎21𝑎2𝑎4 − 3𝑎42. Then for quartic
(110), there will be no real roots if either 𝑃 > 0 or 𝐷 > 0. Here, the quartic polynomial is the numerator of 𝑝4(𝑥) in (84a) with:
𝑎1 = 1, 𝑎2 = −4𝑎, 𝑎3 = 6𝑎2 + 𝑎, 𝑎4 = −4𝑎3 + 2𝑎2 − 8𝑎 and 𝑎5 = 𝑎4 + 6𝑎3 + 11𝑎2 + 6𝑎. We obtain 𝑃 = 8𝑎 > 0 and 𝑝4(𝑥) has no real roots.
Also, 𝑝4(0) = 𝑎4 + 6𝑎3 + 11𝑎2 + 6𝑎 > 0, which gives 𝑝4(𝑥) > 0 for all 𝑥 > 0 and 𝑎 > 0, since 𝑝4(𝑥) = 0 has no real roots. Now consider
the roots of 𝑞4(𝑥). Then the numerator of 𝑞4(𝑥) in (84b) is

−𝑥3 + (3𝑎 + 1)𝑥2 − (3𝑎2 + 7𝑎 + 2)𝑥 + (𝑎3 + 6𝑎2 + 11𝑎 + 6).

Applying the same method for solving cubics used earlier in the proof of Theorem 2.9 and proceeding as done there, we obtain
the following, single simple real root of 𝑞4(𝑥) as

𝑥 = 𝑥𝐿(𝑎) =
(

𝑎 + 1
3

)

+
⎛

⎜

⎜

⎝

−𝑏2
2

+

√

𝑏31
27

+
𝑏22
4

⎞

⎟

⎟

⎠

1∕3

−
⎛

⎜

⎜

⎝

𝑏2
2

+

√

𝑏31
27

+
𝑏22
4

⎞

⎟

⎟

⎠

1∕3

. (111)

Thus, for 𝑥 > 𝑥𝐿(𝑎), we have

𝛤 (𝑎, 𝑥) > 𝑥𝑎𝑒−𝑥
(

−𝑞4(𝑥)
𝑝4(𝑥)

)

. (112)

Letting

𝑐 =
⎛

⎜

−𝑏2 +

√

𝑏31 +
𝑏22

⎞

⎟

1∕3

and 𝑑 =
⎛

⎜

𝑏2 +

√

𝑏31 +
𝑏22

⎞

⎟

1∕3

(113)
10
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⎝

2 27 4 ⎟

⎠

⎜

⎝

2 27 4 ⎟

⎠
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and using the arithmetic mean/geometric mean inequality again as done in Theorem 2.9, we get

𝑥𝐿(𝑎) <
(

𝑎 + 1
3

)

+

1
3
(𝑐 − 𝑑)

(𝑐 𝑑)1∕3 =
(

𝑎 + 1
3

)

−
𝑏2
𝑏1

=
(

𝑎 + 1
3

)

+
( 198𝑎 + 146
135𝑎 + 145

)

<
(

𝑎 + 1
3

)

+ 146
145

= 𝑎 + 161
45

.

(114)

This completes the proof. ■

Next, let us consider some perturbations of some of the rational function bounds given earlier which will be improvements of
these bounds and also be valid bounds for the same set of positive 𝑥− values.

Theorem 2.11. Suppose 0 < 𝑎 ≤ 1 or 𝑎 ≥ 2. Let

𝑀𝑘(𝑎, 𝑥) = (−1)𝑘(𝑘!)
( 1
𝑥

)𝑘+1 (
1 + 𝑘 + 1

𝑥

)𝑎−1
, 𝑘 = 1, 2, 3,… (115)

Then

𝛤 (𝑎, 𝑥) ≤ 𝑥𝑎𝑒−𝑥
(

𝑀𝑘(𝑎, 𝑥) − 𝑞𝑘(𝑥)
𝑝𝑘(𝑥)

)

if 𝑥 > 𝑥𝑈 (𝑎), 𝑘 odd, (116)

and

𝛤 (𝑎, 𝑥) ≥ 𝑥𝑎𝑒−𝑥
(

𝑀𝑘(𝑎, 𝑥) − 𝑞𝑘(𝑥)
𝑝𝑘(𝑥)

)

if 𝑥 > 𝑥𝐿(𝑎), 𝑘 even, (117)

where 𝑥𝑈 (𝑎) and 𝑥𝐿(𝑎) were given earlier in Theorems 2.8–2.10. If 1 < 𝑎 < 2, then (116) and (117) hold with the inequality signs reversed
in the first inequality.

Proof. From (75), we have, for 0 < 𝑎 ≤ 1 or 𝑎 ≥ 2, :
𝑅(𝑘)(𝑥) = 𝑝𝑘(𝑥)𝑅(𝑥) + 𝑞𝑘(𝑥), (118)

where

𝑅(𝑘)(𝑥) = (−1)𝑘 ∫
∞

0
(1 + 𝑢)𝑎−1𝑢𝑘𝑒−𝑥𝑢𝑑 𝑢. (119)

Then

𝑅(𝑘)(𝑥) = (−1)𝑘
( 1
𝑥

)𝑘+1
𝑘!∫

∞

0
(1 + 𝑢)𝑎−1

[

𝑥𝑘+1

𝑘!
𝑢𝑘𝑒−𝑥𝑢

]

𝑑 𝑢. (120)

The expression in brackets of (120) is a probability density function on [0,∞). Also, (1 + 𝑢)𝑎−1 is a convex function of 𝑢. By Jensen’s
inequality, we get

∫

∞

0
(1 + 𝑢)𝑎−1

[

𝑥𝑘+1

𝑘!
𝑢𝑘𝑒−𝑥𝑢

]

𝑑 𝑢 ≥
(

1 + 𝑘 + 1
𝑥

)𝑎−1
. (121)

From (121), this gives
𝑅(𝑘)(𝑥) ≤ 𝑀𝑘(𝑎, 𝑥) 𝑖𝑓 𝑘 𝑖𝑠 𝑜𝑑 𝑑 𝑎𝑛𝑑
𝑅(𝑘)(𝑥) ≥ 𝑀𝑘(𝑎, 𝑥) 𝑖𝑓 𝑘 𝑖𝑠 𝑒𝑣𝑒𝑛. (122)

Thus, (118) gives

𝑝𝑘(𝑥)𝑅(𝑥) + 𝑞𝑘(𝑥) ≤ 𝑀𝑘(𝑎, 𝑥) 𝑖𝑓 𝑘 𝑖𝑠 𝑜𝑑 𝑑 (123)

and

𝑝𝑘(𝑥)𝑅(𝑥) + 𝑞𝑘(𝑥) ≥ 𝑀𝑘(𝑎, 𝑥) 𝑖𝑓 𝑘 𝑖𝑠 𝑒𝑣𝑒𝑛. (124)

Solving for 𝑅(𝑥) in (123)–(124), we obtain:

𝑅(𝑥) ≤
𝑀𝑘(𝑎, 𝑥) − 𝑞𝑘(𝑥)

𝑝𝑘(𝑥)
𝑖𝑓 𝑘 𝑖𝑠 𝑜𝑑 𝑑 𝑎𝑛𝑑 𝑥 > 𝑥𝑈 (𝑎), (125)

and

𝑅(𝑥) ≥
𝑀𝑘(𝑎, 𝑥) − 𝑞𝑘(𝑥)

𝑝𝑘(𝑥)
𝑖𝑓 𝑘 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 𝑥 > 𝑥𝐿(𝑎). (126)

Since 𝛤 (𝑎, 𝑥) = 𝑥𝑎𝑒−𝑥𝑅(𝑥), (116) and (117) follow form (125) and (126), respectively. This completes the proof. In the case 0 < 𝑎 ≤ 1
or 𝑎 ≥ 2. For 1 < 𝑎 < 2, the above proof applies with ‘both’ inequality signs reversed since (1 + 𝑢)𝑎−1 is a concave function of 𝑢
instead. ■
11
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f

s

a

Theorem 2.12. Suppose 𝑎 > 0 and 𝑥 > 0. Let

𝑁𝑘(𝑎, 𝑥) =
(−1)𝑘+1(𝑘!)

𝑥𝑘
. (127)

(a). Suppose that either (𝑎 ≥ 1 and 𝑘 is odd) or (0 < 𝑎 < 1 and 𝑘 is even). Then

𝛤 (𝑎, 𝑥) < 𝑥𝑎𝑒−𝑥
(

−𝑞𝑘(𝑥)
𝑝𝑘(𝑥) +𝑁𝑘(𝑎, 𝑥)

)

𝑖𝑓 𝑝𝑘(𝑥) +𝑁𝑘(𝑎, 𝑥) > 0. (128)

(b). If (0 < 𝑎 < 1 and 𝑘 is odd) or (𝑎 ≥ 1 and 𝑘 is even). Then

𝛤 (𝑎, 𝑥) > 𝑥𝑎𝑒−𝑥
(

−𝑞𝑘(𝑥)
𝑝𝑘(𝑥) +𝑁𝑘(𝑎, 𝑥)

)

𝑖𝑓 𝑝𝑘(𝑥) +𝑁𝑘(𝑎, 𝑥) > 0. (129)

Proof. We prove only the case 𝑎 ≥ 1 and 𝑘 is odd. The other parts are proven in a very similar fashion and are omitted. Then

𝑅(𝑘)(𝑥) = (−1)𝑘

𝑥 ∫

∞

0
(1 + 𝑢)𝑎−1𝑢𝑘

[

𝑥𝑒−𝑥𝑢
]

𝑑 𝑢. (130)

The expression in brackets of (130) is a probability density function. Since 𝑓1(𝑢) = (𝑢 + 1)𝑎−1 and 𝑓2(𝑢) = 𝑢𝑘 are non-decreasing
unctions of 𝑢, standard covariance inequalities from probability theory give

∫

∞

0
(1 + 𝑢)𝑎−1𝑢𝑘

[

𝑥𝑒𝑥𝑢
]

𝑑 𝑢 ≥
(

∫

∞

0
(𝑢 + 1)𝑎−1𝑥𝑒−𝑥𝑢𝑑 𝑢

)

⋅
(

∫

∞

0
𝑢𝑘𝑥𝑒−𝑥𝑢𝑑 𝑢

)

, (131)

which gives, from (130), that

𝑅(𝑘)(𝑥) ≤ (−1)𝑘𝑘!
𝑥𝑘

⋅ 𝑅(𝑥). (132)

So,

𝑝𝑘(𝑥)𝑅(𝑥) + 𝑞𝑘(𝑥) < 𝑁𝑘(𝑎, 𝑥)𝑅(𝑥). (133)

Solving for 𝑅(𝑥) in (133), we get

𝛤 (𝑎, 𝑥) < 𝑥𝑎𝑒−𝑥
(

−𝑞𝑘(𝑥)
𝑝𝑘(𝑥) +𝑁𝑘(𝑎, 𝑥)

)

𝑖𝑓 𝑝𝑘(𝑥) +𝑁𝑘(𝑎, 𝑥) > 0. (134)

Thus,
𝛤 (𝑎, 𝑥) = 𝑥𝑎𝑒−𝑥𝑅(𝑥)

< 𝑥𝑎𝑒−𝑥
(

−𝑞𝑘(𝑥)
𝑝𝑘(𝑥) +𝑁𝑘(𝑎, 𝑥)

)

𝑖𝑓 𝑝𝑘(𝑥) +𝑁𝑘(𝑎, 𝑥) > 0.
(135)

This completes the proof. ■

Remark 2. If 𝑘 is odd, then bounds (128) and (129) hold on a smaller subinterval of (0,∞) than the bounds given earlier in Theorems.
Also, when 𝑘 is even, a bound of the ‘opposite’ type is provided (an upper bound for 0 < 𝑎 < 1) than the bound type (lower) given
in the Theorem earlier. A similar remark holds for 𝑘 even. Note that lim𝑥⟶∞

[

𝑝𝑘(𝑥) +𝑁𝑘(𝑎, 𝑥)
]

= ∞, so that there will exist a positive
real number 𝑥𝑘(𝑎) such that 𝑥 > 𝑥𝑘(𝑎) implies 𝑝𝑘(𝑥) +𝑁𝑘(𝑎, 𝑥) > 0, so that Theorem 2.12 is applicable.

3. Numerical results

In this section, we conduct an empirical study to evaluate the performance of the proposed bounds. We calculate the exact values
of 𝛤 (𝑎, 𝑥), the bounds for the proposed theorems, and their respective relative errors.

Table 1 compares the proposed upper bound from Theorem 2.6 with the existing upper bound from Theorem 1.1 [1] for the
incomplete gamma function 𝛤 (𝑎, 𝑥) across various values of 𝑥 and 𝑎. From the result, we observe that Theorem 2.6 consistently
provides a tighter upper bound than Theorem 1.1. The relative errors associated with Theorem 2.6 are significantly smaller in
ome cases by several orders of magnitude than those from Theorem 1.1. For example, when 𝑥 = 5 and 𝑎 = 2, the relative error

for Theorem 1.1 is 4.17 × 10−2, whereas for Theorem 2.6 it is only 2.15 × 10−7. This indicates that Theorem 2.6 offers a much more
accurate approximation of the incomplete gamma function’s upper bound across all tested values of 𝑥 and 𝑎. The results are graphed
in Fig. 1.

Table 2 evaluates the proposed lower bound from Theorem 2.8 against the existing lower bound from Theorem 1.1 [1] for various
values of 𝑥 and 𝑎. The results show that Theorem 2.8 provides a significantly better lower bound than Theorem 1.1. For instance,
t 𝑥 = 15 and 𝑎 = 2, the relative error for Theorem 1.1 is 6.25 × 10−2, while for Theorem 2.8, it is only 1.31 × 10−2, reflecting a

substantial improvement. This pattern holds across all presented values, demonstrating that Theorem 2.8 yields more precise lower
bounds for the incomplete gamma function. The results are graphed in Fig. 2.

Table 3 compares the upper bounds from Theorems 2.4 and 2.6 with the existing upper bound from Theorem 1.3 [1] for negative
values of 𝑎 (specifically 𝑎 = −4,−3,−2) across various 𝑥 values. The results indicate that Theorems 2.4 and 2.6 offer improved upper
12



Results in Applied Mathematics 25 (2025) 100552S.G. From and S. Ratnasingam
Fig. 1. Comparisons for Lower Bounds 1.1 [1] and 2.8.

Fig. 2. Comparisons for Upper Bounds 1.1 [1] and 2.6.
13
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Table 1
Comparisons for upper bounds 1.1 [1] and 2.6.
𝑥 𝑎 𝛤 (𝑎, 𝑥) Theorem 1.1 Theorem 2.6 RE(Theorem 1.1) RE(Theorem 2.6)

5 2 4.042767 × 10−2 4.211217 × 10−2 4.042768 × 10−2 4.166689 × 10−2 2.15347 × 10−7
3 2.49304 × 10−1 2.807478 × 10−1 2.56042 × 10−1 1.261261 × 10−1 2.702703 × 10−2
4 1.590155 × 100 2.105608 × 100 1.900101 × 100 3.241525 × 10−1 1.949153 × 10−1
10 3.513302 × 105 NA NA NA NA
20 1.216451 × 1017 NA NA NA NA
30 8.841762 × 1030 NA NA NA NA

10 2 4.993991 × 10−4 5.044437 × 10−4 4.993992 × 10−4 1.010123 × 10−2 2.173759 × 10−7
3 5.538792 × 10−3 5.674991 × 10−3 5.551763 × 10−3 2.459013 × 10−2 2.341883 × 10−3
4 6.20163 × 10−2 6.485704 × 10−2 6.259137 × 10−2 4.580633 × 10−2 9.272825 × 10−3
10 1.661735 × 105 NA NA NA NA
20 1.212249 × 1017 NA NA NA NA
30 8.84176 × 1030 NA NA NA NA

15 2 4.894388 × 10−6 4.916287 × 10−6 4.894437 × 10−6 4.474324 × 10−3 9.99324 × 10−6
3 7.861689 × 10−5 7.941695 × 10−5 7.866788 × 10−5 1.017669 × 10−2 6.48605 × 10−4
4 1.268271 × 10−3 1.290525 × 10−3 1.271219 × 10−3 1.754679 × 10−2 2.324014 × 10−3
10 2.53485 × 104 2.939978 × 104 2.802448 × 104 1.598235 × 10−1 1.055676 × 10−1
20 1.064661 × 1017 NA NA NA NA
30 8.838062 × 1030 NA NA NA NA

25 2 3.610828 × 10−10 3.616652 × 10−10 3.610865 × 10−10 1.613069 × 10−3 1.048812 × 10−5
3 9.402062 × 10−9 9.434744 × 10−9 9.403401 × 10−9 3.476074 × 10−3 1.423438 × 10−4
4 2.452055 × 10−7 2.465899 × 10−7 2.453153 × 10−7 5.645833 × 10−3 4.47767 × 10−4
10 8.036944 × 101 8.27786 × 101 8.123691 × 101 2.997598 × 10−2 1.07935 × 10−2
20 1.624872 × 1016 2.105169 × 1016 2.090109 × 1016 2.955901 × 10−1 2.863219 × 10−1
30 7.231643 × 1030 NA NA NA NA

40 2 1.741806 × 10−16 1.742915 × 10−16 1.741825 × 10−16 6.361754 × 10−4 1.077781 × 10−5
3 7.145663 × 10−15 7.155123 × 10−15 7.145961 × 10−15 1.323854 × 10−3 4.175398 × 10−5
4 2.933296 × 10−13 2.939402 × 10−13 2.933621 × 10−13 2.081506 × 10−3 1.106584 × 10−4
10 1.424644 × 10−3 1.437007 × 10−3 1.427318 × 10−3 8.678385 × 10−3 1.877224 × 10−3
20 2.144638 × 1013 2.22434 × 1013 2.188012 × 1013 3.71634 × 10−2 2.022399 × 10−2
30 3.822177 × 1029 4.452745 × 1029 4.393996 × 1029 1.64976 × 10−1 1.496056 × 10−1

Table 2
Comparisons for lower bounds 1.1 [1] and 2.8.
𝑥 𝑎 𝛤 (𝑎, 𝑥) Theorem 1.1 Theorem 2.8 RE (Theorem 1.1) RE (Theorem 2.8)

15 2 4.894388 × 10−6 4.588535 × 10−6 4.830037 × 10−6 6.249063 × 10−2 1.314803 × 10−2
3 7.861689 × 10−5 6.882802 × 10−5 7.725594 × 10−5 1.245135 × 10−1 1.731111 × 10−2
5 2.055939 × 10−2 1.54863 × 10−2 1.991096 × 10−2 2.467527 × 10−1 3.153914 × 10−2
8 9.073105 × 10+1 5.226628 × 10+1 8.25257 × 10+1 4.239428 × 10−1 9.043595 × 10−2

20 2 4.328378 × 10−8 4.122307 × 10−8 4.299339 × 10−8 4.760924 × 10−2 6.709022 × 10−3
3 9.110298 × 10−7 8.244614 × 10−7 9.035194 × 10−7 9.502249 × 10−2 8.243826 × 10−3
5 4.06674 × 10−4 3.297846 × 10−4 4.014769 × 10−4 1.89069 × 10−1 1.27796 × 10−2
8 3.924094 × 10+0 2.638277 × 10+0 3.818558 × 10+0 3.276724 × 10−1 2.689429 × 10−2

30 2 2.900832 × 10−12 2.807287 × 10−12 2.893006 × 10−12 3.224779 × 10−2 2.698105 × 10−3
3 9.001954 × 10−11 8.421861 × 10−11 8.974114 × 10−11 6.444083 × 10−2 3.092689 × 10−3
5 8.698323 × 10−8 7.579675 × 10−8 8.662485 × 10−8 1.28605 × 10−1 4.120023 × 10−3
8 2.637804 × 10−3 2.046512 × 10−3 2.620534 × 10−3 2.241608 × 10−1 6.547349 × 10−3

40 2 1.741806 × 10−16 1.699342 × 10−16 1.739299 × 10−16 2.437973 × 10−2 1.439833 × 10−3
3 7.145663 × 10−15 6.797367 × 10−15 7.134263 × 10−15 4.874234 × 10−2 1.595457 × 10−3
5 1.204911 × 10−11 1.087579 × 10−11 1.202526 × 10−11 9.737866 × 10−2 1.979652 × 10−3
8 8.386611 × 10−7 6.960504 × 10−7 8.363396 × 10−7 1.700458 × 10−1 2.768158 × 10−3

bounds over Theorem 1.3. The relative errors for Theorems 2.4 and 2.6 are consistently lower than those for Theorem 1.3, signifying
greater accuracy. For example, when 𝑎 = −4 and 𝑥 = 5, the relative error for Theorem 1.3 is 6.08 × 10−2, whereas for Theorem 2.6, it
is 2.13 × 10−2, and for Theorem 2.4, it is 4.15 × 10−2. This improvement is evident across all the combinations of 𝑎 and 𝑥, indicating
he effectiveness of Theorems 2.4 and 2.6 in providing tighter upper bounds for negative 𝑎. The results are graphed in Fig. 3.

Table 4 presents a comparison between the proposed lower bound from Theorem 2.10 and the existing lower bound from
Theorem 1.7 [1] for large 𝑥 values (𝑥 = 40 to 90) and small integer values of 𝑎 (𝑎 = 1 to 4). The results suggest that Theorem 2.10
generally provides lower bounds with accuracy comparable to or better than that of Theorem 1.7. For instance, at 𝑥 = 60 and 𝑎 = 1,
he relative error for Theorem 1.7 is 6.56 × 10−4, whereas for Theorem 2.10, it is 2.66 × 10−4, indicating a more precise approximation
y Theorem 2.10. While in some cases the relative errors are close, Theorem 2.10 tends to have smaller relative errors, especially

for larger 𝑥 values. This demonstrates that Theorem 2.10 effectively provides accurate lower bounds for the incomplete gamma
unction when 𝑥 is large. The results are graphed in Fig. 4.
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Table 3
Comparisons for upper bounds 1.3 [1], 2.4 and 2.6.
𝑎 𝑥 𝛤 (𝑎, 𝑥) Theorem 1.3 Theorem 2.6 Theorem 2.4 RE (Theorem 1.3) RE (Theorem 2.6) RE (Theorem 2.4)

−4 5 1.129218 × 10−6 1.197857 × 10−6 1.153313 × 10−6 1.176078 × 10−6 6.078516 × 10−2 2.133786 × 10−2 4.149816 × 10−2
10 3.089731 × 10−10 3.242852 × 10−10 3.112529 × 10−10 3.121245 × 10−10 4.955816 × 10−2 7.378774 × 10−3 1.019973 × 10−2
15 3.056829 × 10−13 3.180271 × 10−13 3.066878 × 10−13 3.069214 × 10−13 4.038229 × 10−2 3.287464 × 10−3 4.051483 × 10−3
20 5.191941 × 10−16 5.367588 × 10−16 5.200945 × 10−16 5.202431 × 10−16 3.383059 × 10−2 1.734217 × 10−3 2.020418 × 10−3
25 1.191374 × 10−18 1.225970 × 10−18 1.192595 × 10−18 1.192750 × 10−18 2.903851 × 10−2 1.024653 × 10−3 1.154881 × 10−3
30 3.313631 × 10−21 3.397830 × 10−21 3.315806 × 10−21 3.316030 × 10−21 2.540966 × 10−2 6.563950 × 10−4 7.238742 × 10−4
40 3.696563 × 10−26 3.771621 × 10−26 3.697742 × 10−26 3.697829 × 10−26 2.030484 × 10−2 3.189497 × 10−4 3.423522 × 10−4
50 5.619853 × 10−31 5.714814 × 10−31 5.620871 × 10−31 5.620928 × 10−31 1.689749 × 10−2 1.811818 × 10−4 1.913210 × 10−4

−3 5 6.263850 × 10−6 6.737947 × 10−6 6.387158 × 10−6 6.468429 × 10−6 7.568780 × 10−2 1.968573 × 10−2 3.266029 × 10−2
10 3.304100 × 10−9 3.492302 × 10−9 3.323885 × 10−9 3.329328 × 10−9 5.696032 × 10−2 5.988079 × 10−3 7.635502 × 10−3
15 4.819769 × 10−12 5.035429 × 10−12 4.831952 × 10−12 4.834012 × 10−12 4.474502 × 10−2 2.527919 × 10−3 2.955218 × 10−3
20 1.080537 × 10−14 1.120192 × 10−14 1.081937 × 10−14 1.082106 × 10−14 3.669906 × 10−2 1.295089 × 10−3 1.451292 × 10−3
25 3.078742 × 10−17 3.174387 × 10−17 3.081056 × 10−17 3.081272 × 10−17 3.106641 × 10−2 7.518249 × 10−4 8.217939 × 10−4
30 1.022708 × 10−19 1.050238 × 10−19 1.023195 × 10−19 1.023232 × 10−19 2.691874 × 10−2 4.763965 × 10−4 5.122573 × 10−4
40 1.511636 × 10−24 1.543733 × 10−24 1.511983 × 10−24 1.512001 × 10−24 2.123357 × 10−2 2.292842 × 10−4 2.415455 × 10−4
50 2.861175 × 10−29 2.911321 × 10−29 2.861548 × 10−29 2.861563 × 10−29 1.752612 × 10−2 1.304050 × 10−4 1.356704 × 10−4

−2 5 3.511203 × 10−5 3.850255 × 10−5 3.569625 × 10−5 3.593572 × 10−5 9.656291 × 10−2 1.663850 × 10−2 2.345872 × 10−2
10 3.548753 × 10−8 3.783327 × 10−8 3.564385 × 10−8 3.567137 × 10−8 6.610039 × 10−2 4.404769 × 10−3 5.180371 × 10−3
15 7.617799 × 10−11 8.086735 × 10−11 7.641467 × 10−11 7.645137 × 10−11 5.008496 × 10−2 3.106394 × 10−3 3.601323 × 10−3
20 2.280070 × 10−13 2.385361 × 10−13 2.283553 × 10−13 2.283987 × 10−13 4.606070 × 10−2 1.526462 × 10−3 1.718154 × 10−3
25 8.548143 × 10−16 8.846705 × 10−16 8.553774 × 10−16 8.554424 × 10−16 3.497303 × 10−2 6.575344 × 10−4 7.117656 × 10−4
30 3.672961 × 10−18 3.780851 × 10−18 3.674419 × 10−18 3.674607 × 10−18 2.938799 × 10−2 3.964377 × 10−4 4.220380 × 10−4
40 1.086350 × 10−22 1.114507 × 10−22 1.086717 × 10−22 1.086735 × 10−22 2.588874 × 10−2 3.385672 × 10−4 3.580977 × 10−4
50 3.323808 × 10−27 3.402673 × 10−27 3.323984 × 10−27 3.323996 × 10−27 2.330674 × 10−2 2.026460 × 10−4 2.079037 × 10−4

Table 4
Comparisons for lower bounds 1.7 [1] and 2.10.
𝑥 𝑎 𝛤 (𝑎, 𝑥) Theorem 1.7 Theorem 2.10 RE (Theorem 1.7) RE (Theorem 2.10)

40 1 4.248306 × 10−18 4.246477 × 10−18 4.245701 × 10−18 4.306107 × 10−4 6.133367 × 10−4
2 1.741806 × 10−16 1.741482 × 10−16 1.740626 × 10−16 1.864861 × 10−4 6.778576 × 10−4
3 7.145663 × 10−15 7.144982 × 10−15 7.140289 × 10−15 9.528862 × 10−5 7.521452 × 10−4
4 2.933296 × 10−13 2.933316 × 10−13 2.930838 × 10−13 6.81055 × 10−6 8.378869 × 10−4

60 1 8.756412 × 10−27 8.750666 × 10−27 8.754079 × 10−27 6.562095 × 10−4 2.664238 × 10−4
2 5.341413 × 10−25 5.339792 × 10−25 5.339888 × 10−25 3.035103 × 10−4 2.85583 × 10−4
3 3.25914 × 10−23 3.258554 × 10−23 3.25814 × 10−23 1.795907 × 10−4 3.06805 × 10−4
4 1.989163 × 10−21 1.988939 × 10−21 1.988506 × 10−21 1.125187 × 10−4 3.303278 × 10−4

70 1 3.975405 × 10−31 3.972348 × 10−31 3.974639 × 10−31 7.690089 × 10−4 1.927624 × 10−4
2 2.822538 × 10−29 2.821519 × 10−29 2.82196 × 10−29 3.611299 × 10−4 2.048782 × 10−4
3 2.004401 × 10−27 2.00396 × 10−27 2.003963 × 10−27 2.197739 × 10−4 2.181614 × 10−4
4 1.423698 × 10−25 1.423492 × 10−25 1.423367 × 10−25 1.447875 × 10−4 2.327281 × 10−4

80 1 1.804831 × 10−35 1.80324 × 10−35 1.804569 × 10−35 8.818083 × 10−4 1.449474 × 10−4
2 1.461914 × 10−33 1.461302 × 10−33 1.46169 × 10−33 4.184482 × 10−4 1.531105 × 10−4
3 1.184331 × 10−31 1.184024 × 10−31 1.184139 × 10−31 2.593059 × 10−4 1.619956 × 10−4
4 9.596046 × 10−30 9.594357 × 10−30 9.594399 × 10−30 1.760144 × 10−4 1.71666 × 10−4

90 1 8.19392 × 10−40 8.18577 × 10−40 8.193001 × 10−40 9.946078 × 10−4 1.12163 × 10−4
2 7.456469 × 10−38 7.452923 × 10−38 7.45559 × 10−38 4.755647 × 10−4 1.179365 × 10−4
3 6.786209 × 10−36 6.784184 × 10−36 6.785366 × 10−36 2.984052 × 10−4 1.24188 × 10−4
4 6.176961 × 10−34 6.175685 × 10−34 6.176152 × 10−34 2.065537 × 10−4 1.309551 × 10−4

Table 5 compares the upper bounds obtained from Theorem 2.4 for various values of 𝑎 and 𝑥 where 𝑎 > 𝑥. The relative errors
etween the upper bounds and the actual values are also presented. The relative errors associated with these bounds range from
pproximately 0.026 to 0.535. Notably, as 𝑎 increases for a given 𝑥, the relative error generally decreases. This suggests improved
ccuracy of the upper bound with larger 𝑎. Further, it is important to note that the upper bounds for cases where 𝑎 > 𝑥 is not
ddressed by Pinelis [1]. The results are graphed in Fig. 5.

Table 6 compares the actual values of the incomplete gamma function 𝛤 (𝑎, 𝑥) with the bounds provided by Theorem 2.11 for
different values of the parameters 𝑎 and 𝑥. Specifically, it presents upper bounds when 𝑘 is odd (here, 𝑘 = 1) and lower bounds when
𝑘 is even (here, 𝑘 = 2), along with their corresponding relative errors. For 𝑎 = 0.5 and increasing values of 𝑥, both the upper and
ower bounds provided by Theorem 2.11 become increasingly accurate. The relative errors for 𝑘 = 1 (upper bound) decrease from
2.739338 × 10−3 at 𝑥 = 5 to 3.460803 × 10−5 at 𝑥 = 30. Similarly, for 𝑘 = 2 (lower bound), the relative errors decrease significantly,
ndicating that the bounds are tighter for larger 𝑥. When 𝑎 = 1 and 𝑎 = 2, the bounds provided by Theorem 2.11 are remarkably

accurate across all values of 𝑥. The relative errors are consistently very low (on the order of 10−7 to 10−5) for both 𝑘 = 1 and 𝑘 = 2.
This suggests that Theorem 2.11 is particularly effective for integer and small fractional values of 𝑎. However, the lower bound for
15
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Table 5
Comparisons for upper bound 2.4.
𝑎 𝑥 𝛤 (𝑎, 𝑥) Theorem 2.4 RE

0.6 0.1 1.085772151 1.666755811 0.535088011
0.2 0.899439256 1.168935017 0.299626417
0.3 0.763087263 0.916975188 0.201664912
0.5 0.567529651 0.631833161 0.113304229

0.7 0.1 1.024394017 1.418519144 0.384739778
0.2 0.870855068 1.061505117 0.218922821
0.3 0.752330325 0.863771059 0.148127398
0.5 0.574369634 0.622272361 0.083400522

0.8 0.1 0.974646826 1.213444408 0.245009347
0.2 0.848080029 0.968251804 0.141698626
0.3 0.745037651 0.816844704 0.096380436
0.5 0.583055395 0.614753622 0.054365721

0.9 0.1 0.935162243 1.044195918 0.116593325
0.2 0.830788149 0.887719986 0.068527503
0.3 0.741193516 0.775916249 0.046847053
0.5 0.593723165 0.609434499 0.026462390

Fig. 3. Comparisons for Upper Bounds 1.3 [1], 2.4, and 2.6.

𝑘 = 2 is available, with a higher relative error of 35.41%. As 𝑥 increases, both the availability and accuracy of the bounds improve.
t 𝑥 = 10, the relative errors decrease to 2.51% for 𝑘 = 1 and 1.47% for 𝑘 = 2, and they continue to decrease with larger 𝑥. Thus,

Theorem 2.11 provides useful bounds for the incomplete gamma function, with accuracy generally improving for larger values of
and for certain values of 𝑎. The relative errors tend to decrease as 𝑥 increases, indicating that the bounds become tighter. The

heorem appears to be particularly effective for small and larger values of 𝑎, while for larger 𝑎 and smaller 𝑥, the bounds may be
ess accurate or not applicable.

Table 7 compares the exact values of the incomplete gamma function, 𝛤 (𝑎, 𝑥), and the approximations provided by Theorem 2.12
for different values of 𝑎 and 𝑥, with 𝑘 set to 1 (odd) and 2 (even). According to the given conditions, the approximation yields an
upper bound when 𝑎 ≥ 1 and 𝑘 is odd or when 0 < 𝑎 < 1 and 𝑘 is even. Conversely, it provides a lower bound when 0 < 𝑎 < 1 and
𝑘 is odd or when 𝑎 ≥ 1 and 𝑘 is even. According to the table, for 𝑎 = 0.5 (where 0 < 𝑎 < 1), the approximation with 𝑘 = 2 (even)
consistently overestimates 𝛤 (𝑎, 𝑥), serving as an upper bound, while 𝑘 = 1 (odd) underestimates it, acting as a lower bound, which
aligns with the stated behavior. As 𝑥 increases, the relative errors decrease, indicating improved accuracy of the approximations at
larger 𝑥 values. For 𝑎 = 1, both 𝑘 = 1 and 𝑘 = 2 approximations closely match the exact values across all 𝑥, with negligible relative
errors, suggesting high precision of the theorem at this specific value of 𝑎. When 𝑎 = 1.5 (with 𝑎 > 1), the approximation with 𝑘 = 1
(odd) consistently overestimates 𝛤 (𝑎, 𝑥), providing an upper bound, while 𝑘 = 2 (even) underestimates it, providing a lower bound,
16
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Fig. 4. Comparisons for Lower Bounds 1.7 [1] and 2.10.

Table 6
Comparisons for bounds 2.11.
𝑎 𝑥 𝛤 (𝑎, 𝑥) Theorem 2.11 (𝑘 = 1, odd) RE Theorem 2.11 (𝑘 = 2, even) RE

0.5 5 2.774578 × 10−3 2.782178 × 10−3 2.739338 × 10−3 2.770951 × 10−3 1.307353 × 10−3
10 1.372612 × 10−5 1.373277 × 10−5 4.84532 × 10−4 1.372457 × 10−5 1.134131 × 10−4
15 7.657738 × 10−8 7.659051 × 10−8 1.714521 × 10−4 7.657599 × 10−8 1.809615 × 10−5
20 4.501324 × 10−10 4.501702 × 10−10 8.396816 × 10−5 4.501329 × 10−10 1.027637 × 10−6
25 2.725046 × 10−12 2.725183 × 10−12 5.027758 × 10−5 2.725065 × 10−12 6.829022 × 10−6
30 1.681284 × 10−14 1.681342 × 10−14 3.460803 × 10−5 1.6813 × 10−14 9.066783 × 10−6

1 5 6.737946 × 10−3 6.737947 × 10−3 2.198106 × 10−7 6.737947 × 10−3 2.198106 × 10−7
10 4.539942 × 10−5 4.539993 × 10−5 1.127994 × 10−5 4.539993 × 10−5 1.127994 × 10−5
15 3.058989 × 10−7 3.059023 × 10−7 1.127994 × 10−5 3.059023 × 10−7 1.127994 × 10−5
20 2.06113 × 10−9 2.061154 × 10−9 1.127994 × 10−5 2.061154 × 10−9 1.127994 × 10−5
25 1.388779 × 10−11 1.388794 × 10−11 1.127994 × 10−5 1.388794 × 10−11 1.127994 × 10−5
30 9.357517 × 10−14 9.357623 × 10−14 1.127994 × 10−5 9.357623 × 10−14 1.127994 × 10−5

2 5 4.042767 × 10−2 4.042768 × 10−2 2.15347 × 10−7 4.042768 × 10−2 2.15347 × 10−7
10 4.993991 × 10−4 4.993992 × 10−4 2.173759 × 10−7 4.993992 × 10−4 2.173759 × 10−7
15 4.894388 × 10−6 4.894437 × 10−6 9.99324 × 10−6 4.894437 × 10−6 9.99324 × 10−6
20 4.328378 × 10−8 4.328423 × 10−8 1.02996 × 10−5 4.328423 × 10−8 1.02996 × 10−5
25 3.610828 × 10−10 3.610865 × 10−10 1.048812 × 10−5 3.610865 × 10−10 1.048812 × 10−5
30 2.900832 × 10−12 2.900863 × 10−12 1.061584 × 10−5 2.900863 × 10−12 1.061584 × 10−5

5 5 1.057184 × 101 NA NA 6.828235 × 100 3.541109 × 10−1
10 7.020645 × 10−1 7.19716 × 10−1 2.514227 × 10−2 6.917769 × 10−1 1.465339 × 10−2
15 2.055939 × 10−2 2.067453 × 10−2 5.600448 × 10−3 2.052263 × 10−2 1.788019 × 10−3
20 4.06674 × 10−4 4.075236 × 10−4 2.089118 × 10−3 4.064925 × 10−4 4.463485 × 10−4
25 6.405801 × 10−6 6.412191 × 10−6 9.975747 × 10−4 6.405182 × 10−6 8.534963 × 10−5
30 1.156933 × 10−7 1.157428 × 10−7 7.082905 × 10−4 1.15689 × 10−7 1.228378 × 10−5

again confirming the expected behavior. The relative errors decrease with increasing 𝑥, but remain slightly larger compared to the
= 1 case. At higher values of 𝑎, such as 𝑎 = 5, the approximation with 𝑘 = 1 significantly overestimates 𝛤 (𝑎, 𝑥) when 𝑥 is small,

eflected by large relative errors, but the accuracy improves as 𝑥 increases.

4. Conclusions

In this paper, we introduced new bounds for the upper incomplete gamma function using various methods. We use the log-
onvexity of the function 𝐻(𝑎, 𝑥) = 𝛤 (𝑎,𝑥) with respect to 𝑎, and established an interpolatory upper bound for 𝛤 (𝑎, 𝑥) applicable to
17
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Table 7
Comparisons for bounds 2.12.
𝑎 𝑥 𝛤 (𝑎, 𝑥) Theorem 2.12 (𝑘 = 1, odd) RE Theorem 2.12 (𝑘 = 2, even) RE

0.5 5 2.774578 × 10−3 2.739365 × 10−3 1.269127 × 10−2 2.812415 × 10−3 1.363696 × 10−2
10 1.372612 × 10−5 1.367307 × 10−5 3.865485 × 10−3 1.37501 × 10−5 1.74654 × 10−3
15 7.657738 × 10−8 7.643578 × 10−8 1.849105 × 10−3 7.661886 × 10−8 5.416759 × 10−4
20 4.501324 × 10−10 4.496468 × 10−10 1.078922 × 10−3 4.502404 × 10−10 2.397859 × 10−4
25 2.725046 × 10−12 2.723126 × 10−12 7.044778 × 10−4 2.7254 × 10−12 1.30007 × 10−4
30 1.681284 × 10−14 1.680453 × 10−14 4.94511 × 10−4 1.68142 × 10−14 8.0744 × 10−5

1 5 6.737946 × 10−3 6.737947 × 10−3 2.198106 × 10−7 6.737947 × 10−3 2.198106 × 10−7
10 4.539942 × 10−5 4.539993 × 10−5 1.127994 × 10−5 4.539993 × 10−5 1.127994 × 10−5
15 3.058989 × 10−7 3.059023 × 10−7 1.127994 × 10−5 3.059023 × 10−7 1.127994 × 10−5
20 2.06113 × 10−9 2.061154 × 10−9 1.127994 × 10−5 2.061154 × 10−9 1.127994 × 10−5
25 1.388779 × 10−11 1.388794 × 10−11 1.127994 × 10−5 1.388794 × 10−11 1.127994 × 10−5
30 9.357517 × 10−14 9.357623 × 10−14 1.127994 × 10−5 9.357623 × 10−14 1.127994 × 10−5

1.5 5 1.64538 × 10−2 1.674056 × 10−2 1.742813 × 10−2 1.60282 × 10−2 2.586668 × 10−2
10 1.504286 × 10−4 1.511234 × 10−4 4.618193 × 10−3 1.500702 × 10−4 2.382631 × 10−3
15 1.22303 × 10−6 1.225608 × 10−6 2.107893 × 10−3 1.222237 × 10−6 6.489379 × 10−4
20 9.442724 × 10−9 9.454112 × 10−9 1.206049 × 10−3 9.44028 × 10−9 2.587737 × 10−4
25 7.080147 × 10−11 7.085686 × 10−11 7.822123 × 10−4 7.079265 × 10−11 1.247041 × 10−4
30 5.209389 × 10−13 5.212252 × 10−13 5.496602 × 10−4 5.209042 × 10−13 6.663158 × 10−5

2 5 4.042767 × 10−2 4.211217 × 10−2 4.166689 × 10−2 3.743304 × 10−2 7.407387 × 10−2
10 4.993991 × 10−4 5.044437 × 10−4 1.010123 × 10−2 4.965617 × 10−4 5.681602 × 10−3
15 4.894388 × 10−6 4.916287 × 10−6 4.474324 × 10−3 4.887197 × 10−6 1.469311 × 10−3
20 4.328378 × 10−8 4.339271 × 10−8 2.516591 × 10−3 4.325878 × 10−8 5.775959 × 10−4
25 3.610828 × 10−10 3.616652 × 10−10 1.613069 × 10−3 3.609815 × 10−10 2.803394 × 10−4
30 2.900832 × 10−12 2.90409 × 10−12 1.122975 × 10−3 2.900386 × 10−12 1.539679 × 10−4

5 5 1.057184 × 101 2.105608 × 101 9.917145 × 10−1 NA NA
10 7.020645 × 10−1 7.566655 × 10−1 7.777203 × 10−2 6.485704 × 10−1 7.61954 × 10−2
15 2.055939 × 10−2 2.111769 × 10−2 2.715875 × 10−2 2.007477 × 10−2 3.391237 × 10−2
20 2.550507 × 10−4 2.562046 × 10−4 4.691118 × 10−2 2.545045 × 10−4 4.892121 × 10−2
25 3.240007 × 10−6 3.241465 × 10−6 6.667346 × 10−2 3.23925 × 10−6 6.788247 × 10−2
30 4.07616 × 10−8 4.079023 × 10−8 8.778166 × 10−2 4.075017 × 10−8 8.786413 × 10−2

Fig. 5. Comparisons for Upper Bound 2.4 for various values of 𝑎.

all real 𝑎 ≥ 1 and 𝑥 > 0. This approach allowed us to provide bounds that are particularly effective for intermediate values of 𝑥 and
provide improvements over some of the previously known bounds in the literature. Our empirical study shows that the new bounds
in Theorems 2.4, 2.6, 2.8, and 2.10 consistently outperform existing bounds for the incomplete gamma function 𝛤 (𝑎, 𝑥) across various
18
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a

c
𝛤

conditions including both positive and negative values of 𝑎, as well as for large 𝑥. A drawback of the new bounds is that they are not
s generally applicable as the bounds of Pinelis [1] nor do they have the correct asymptotic form as 𝑥 approaches 0. However, these

new theorems provide tighter upper and lower bounds with significantly lower relative errors compared to existing bounds from [1].
These findings suggest that the proposed new bounds offer more accurate approximations of the incomplete gamma function, which
ould have important implications for applications in probability theory, statistics, and other fields that require precise estimates of
(𝑎, 𝑥), especially when 𝑥 ≫ 𝑎.
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