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Change point detection in SCAD-penalized dynamic panel 
models
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South Carolina, USA; bDepartment of Mathematics, California State University, San Bernardino, 
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ABSTRACT 
We propose a cumulative sum (CUSUM)-based testing procedure to 
sequentially monitor structural changes in smoothly clipped absolute 
deviation (SCAD)-penalized dynamic panel models. Initially, this 
approach uses historical panel data to simultaneously perform vari
able selection and estimation with the SCAD penalty function. Tests 
based on CUSUM statistics are conducted to identify any change 
points in subsequent monitoring data. The consistency of the 
method and the oracle property of the resulting regularized estima
tors are examined. The asymptotic properties of the test statistics are 
established under both the null and alternative hypotheses. 
Simulations are conducted to demonstrate the performance of the 
proposed method. Finally, a real data application is provided to illus
trate the detection procedure.
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1. INTRODUCTION

Panel data analysis is a fundamental tool in empirical research, enabling the examina
tion of dynamic relationships between variables over time across multiple entities. It is 
extensively utilized in fields such as economics, political science, and biostatistics. By 
integrating cross-sectional and time-series dimensions, panel data models offer more 
efficient estimators of causal effects compared to purely cross-sectional or time-series 
analyses (Baltagi 2005; Wooldridge 2010). However, challenges such as time-invariant 
unobservable heterogeneity and endogenous regressors necessitate advanced estimation 
techniques (Verbeek 2008; Arellano and Bond 1991).

Dynamic regression models, including the autoregressive distributed lag (ADL) 
model, are particularly effective in capturing time-dependent structures within panel 
data. These models incorporate lagged variables to account for temporal dependencies 
while controlling for unobserved heterogeneity. Nonetheless, conventional estimation 
methods like the generalized method of moments (GMM) can become computationally 
complex and susceptible to overfitting, especially in high-dimensional contexts (Hansen 
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1982; Hsiao 2014). To address these challenges, penalized regression techniques, such as 
the least absolute shrinkage and selection operator (LASSO) and the smoothly clipped 
absolute deviation (SCAD) estimator can be employed to enhance variable selection and 
estimation efficiency (Tibshirani 1996; Fan and Li 2001).

In this context, detecting structural changes in dynamic panel data models is a critical 
yet challenging task. Such structural shifts can significantly affect model performance 
and inference, emphasizing the importance of developing efficient detection methodolo
gies. Change point detection has been extensively studied in non-panel settings. 
Horv�ath et al. (2004) introduced a sequential monitoring approach to detect structural 
changes in a stationary population using weighted cumulative sums (CUSUMs) of resid
uals, providing a computationally efficient method to sequentially monitor changes in 
model parameters. The CUSUM method offers a robust alternative to likelihood-based 
approaches, particularly in high-dimensional settings where recalculating likelihood 
ratios at each step becomes computationally prohibitive (Horv�ath and Hu�skov�a 2012; 
Ratnasingam and Ning 2021).

The adaptation to panel data requires specialized approaches. Recent advances in this 
field include Horv�ath et al. (2022), who developed methods for detecting common 
breaks in high-dimensional cross-dependent panels, particularly relevant in financial 
and macroeconomic applications where multiple time-series evolve under shared struc
tural changes. In Bai (2009), the authors introduced interactive fixed effects models to 
address unobserved heterogeneity in panel data, thus enabling more flexible modeling 
of dynamic relationships. Furthermore, Jir�ak (2015) proposed uniform change point 
tests in high-dimensional data, offering a framework for consistent detection under 
minimal assumptions. More recently, Horv�ath and Rice (2024) provided a comprehen
sive framework for time-series change point analysis, extending traditional detection 
techniques to handle complex dependencies across both time and cross-sectional units. 
These methodologies highlight the increasing need for scalable and interpretable change 
point detection techniques within panel structures. Based on these advancements, we 
focus on the ADL model under a simplified setting with minimal autocorrelation and 
heteroscedasticity. Despite this assumption, identifying change points remains challeng
ing. We employ SCAD estimation for model training and adapt the CUSUM testing 
procedure for efficient structural change detection.

The remainder of this article is organized as follows: Section 2 introduces key nota
tions, model assumptions, and the application of SCAD for variable selection in panel 
data. Section 3 presents the CUSUM-based test statistics and asymptotic results. Section 
4 provides simulation studies, followed by a real data application in Section 5. Finally, 
Section 6 offers discussions and conclusions.

2. METHODOLOGY

The analysis of panel data is a significant challenge for researchers seeking to examine 
complex relationships among variables. By using information from both cross-sectional 
units and time periods, panel data models can help researchers better understand causal 
effects and dynamic processes. These models provide tools for understanding both 
time-invariant and time-varying relationships in the data.
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2.1. Dynamic Regression Models

Suppose we possess a sample of panel data comprising observations on the same n enti
ties, each with p baseline predictors, observed over two or more time periods T. The 
data are denoted by ðXi, j, t, Yi, tÞ; with i ¼ 1, :::, n; j ¼ 1, :::, p; and t ¼ 1, :::, T: For simpli
city, ðXt , YtÞn�ðpþ1Þ refer to the data matrices at each time t. Xt− ¼ fXt−l: significant 
lagged terms of Xtg � fX1, :::, Xt−1g and Yt− ¼ fYt−s : significant lagged terms of 
Ytg � fY1, :::, Yt−1g at time t, respectively, with 1 � l, s � t − 1 and the cardinality 
jXt− j ¼ L and jYt− j ¼ S: We then consider a general ADL model with L lags of Xt and 
S lags of Yt; denoted as ADL(L, S) at time t. That is

Yt ¼ b0, t þ Xtbt þ Xt−dL þ Yt−gS þ Ui þ Vt þ Ei, t, (2.1) 

where i ¼ 1, :::, n; t ¼ 1, :::, T; and

� b0, t; bt ¼ ðb1, t , :::, bp, tÞ
>
; dL ¼ ðd1, :::, dLÞ

> in which dL ¼ ðd1, L, :::, dp, LÞ
> and 

gS ¼ ðg1, :::, gSÞ
> are true unknown coefficients,

� Ui is unobserved and the single i subscript indicates it is time-invariant and 
varies across entities,

� Vt is unobserved and the single t subscript implies it varies over time but not 
across entities,

� Ei, t is the error term which can vary over time and across entities.

In equation (2.1), Ui and Vt capture unobserved individual and time effects, respect
ively. To mitigate endogeneity concerns, traditional estimation approaches such as 
instrumental variables (IV) and the GMM have been widely employed (Stock and 
Watson 2003; Frees 2004; Wooldridge 2010). However, these methods introduce signifi
cant computational complexity and require carefully chosen instruments or moment 
conditions, which may not always be available. Additionally, GMM-based estimators 
often suffer from weak instrument bias and overfitting when the number of instruments 
grows relative to the sample size (Hsiao 2014; Keele and Kelly 2006).

Given these challenges, we simplify the model specification by assuming weak or no 
autocorrelation and heteroscedasticity, allowing us to adopt a penalized regression 
approach. Without loss of generality, we consider that the data are centered, excluding 
the intercept from the regression model. And for this study, our emphasis is on the 
streamlined ADL model as shown below in reference to Stock and Watson (2003).

Yt ¼ Xtbt þ Yt−gS þ E, (2.2) 

with the following assumptions:

A1. EðEjYt−1, :::, Yt−s, XtÞ ¼ 0;
A2. Yt and Yt−s become independent as s gets large, i.e. 

lim
s!1

CorrðYt, Yt−sÞ ¼ 0;

A3. The random variables ðYt , X1, t , :::, Xp, tÞ have a stationary distribution at each 
time t;

A4. There is no perfect multicollinearity;
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A5. E ¼ ðE1, :::,EnÞ
> does not vary over time and represents an n−vector of inde

pendent identically distributed random variables, with EðE1Þ ¼ 0; VarðE1Þ ¼ r2 <

1; and EðE4
1Þ <1;

A6. Weak or no fixed effects over time and across entities.

The first assumption refers to the concept of exogeneity between the regressors 
and the error term, indicating that no additional lags belong in the model and 
ensuring the absence of severe omitted variable bias. The second assumption reflects 
a weakening of linear dependence over time, but does not imply full statistical inde
pendence unless additional distributional assumptions (e.g., Gaussianity) are imposed 
and needed. We interpret this asymptotic uncorrelatedness as indicative of diminish
ing dependence rather than full independence. The third assumption specifies a sta
tionary distribution, implying that the joint distribution of the variables, including 
lags, remains constant over time. These two assumptions ensure the stability of the 
model so that the process is not explosive. The fourth and fifth assumptions guaran
tee the reliability and stability of estimates. We omit the requirement for employing 
IV or GMM when no autocorrelation and heteroscedasticity are proposed in the 
error term. Furthermore, the last assumption can substantially alleviate the complexity 
of the ADL model, particularly when data availability is limited. Similarly, independ
ent time series are not involved in this context because we consider the case that the 
past values of Xij might be inaccessible, data-intensive, or relatively constant, such as 
gender, baseline health conditions, and genetic characteristics. Otherwise, their lags 
should be incorporated into the model if certain predictors exhibit evident 
autocorrelation.

2.2. Estimation

In general, equation (2.2) can be rewritten as a linear regression model at time t:

Yt ¼Wtht þ E, (2.3) 

where Wt ¼ ðXt , Yt−Þ and ht ¼ ðbt , gSÞ
>
:

Let At ¼ fj, s : bj, t 6¼ 0, gS 6¼ 0g with the cardinality jAtj ¼ K� � K at time t, where 
K� ¼ p� þ S indicating the total number of significant variables with nonzero coeffi
cients, K ¼ pþ t − 1 forming the total number of variables, and recall j ¼ 1, :::, p refer
ring to p predictors of Xj, t and S are the true number of lags of Yt: Under certain 
conditions, given W>

t Wt is of full rank, which indicates the number of entities n � K;
ordinary least squares (OLS) offer the best linear unbiased estimators (BLUE) but lacks 
variable selection. To address the need for selecting significant variables, we often 
employ the best-subset or stepwise selection procedure. However, OLS becomes ineffect
ive when faced with both sparsity and high-dimensionality, where K� is small and K �
n; respectively.

The LASSO is introduced as a regularization procedure for simultaneous estimation 
and variable selection (Tibshirani 1996). It estimates equation (2.3) as

ĥt ¼ arg min
ht
k Yt − Wtht k

2
2 þkt k htk1, (2.4) 
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where k �kq denotes the q-norm and kt is a nonnegative regularization (tunning) param
eter. As kt increases, equation (2.4) continuously shrinks the corresponding ĥt toward 
0, with some estimated coefficients reaching exact 0 if kt is sufficiently large. This con
tinuous shrinkage can enhance prediction accuracy by balancing bias and variance.

Fan and Li (2001) proposed unbiasedness, sparsity, and continuity as the three proper
ties of a good penalty function and defined an oracle procedure. According to our case, 
it is defined as

� Identify the right model: Ât ¼ fj, s : b̂j, t 6¼ 0, ĝS 6¼ 0g ¼ At:

� The optimal estimation rate: 
ffiffiffi
n
p
ðĥt − htÞ!

d Nð0, RÞ; where R is the covariance 
matrix knowing the true model and ĥt ¼ ðb̂t , ĝSÞ

>
:

Zhao and Yu (2006) showed that the LASSO does not maintain the above proper
ties when an irrelevant predictor exhibits a high correlation with the predictors in the 
true model. It may fail to differentiate it from the true predictors, regardless of the 
value of kt: Additionally, Knight and Fu (2000) demonstrated that the LASSO is 
n1=2-consistent under specific regularity conditions, failing to achieve simultaneous 
consistent variable selection and estimation. When incorporating lags of Yt in the 
ADL model, we may encounter these concerns, particularly the former one. Thus, a 
SCAD penalty known as an oracle selection procedure (Fan and Li 2001) is applied to 
adapt (2.4), which is defined as

ĥt ¼ arg min
ht
k Yt − Wtht k

2
2 þ

Xpþs

k¼1
pSCAD

kt
ðjhk, tjÞ, (2.5) 

where j � j denotes the absolute value, pSCAD
kt
ðj � jÞ are the penalty functions depending 

on kt and are allowed not to be identical for all k ¼ 1, :::, K; given by

pSCAD
kt
ðjhk, tjÞ ¼

ktjhk, tj if jhk, tj � kt ,
ð2aktjhk, tj − jhk, tj

2 − k2
t Þ= 2ða − 1Þ½ � if kt < jhk, tj � akt ,

ðaþ 1Þk2
t =2 if jhk, tj > akt ,

8
<

:
(2.6) 

where a > 2 is the additional tunning parameter to kt: Equation (2.6) forms a quadratic 
spline function with knots at kt and akt: It is continuous, with the first derivative of

kt Iðjhk, tj � ktÞ þ
ðakt − jhk, tjÞþ
ða − 1Þkt

Iðjhk, tj > ktÞ

( )

, (2.7) 

where ð�Þþ ¼ maxf0, �g: Equation (2.7) implies the SCAD penalty is continuously differ
entiable on R except for being singular at the origin, with the derivatives being all 
zeroes outside the interval ½−akt , akt�: As a result, it sets small coefficients to zero, and 
shrinks some coefficients toward zero while preserving large coefficients. This yields a 
sparse set of solutions and approximately unbiased coefficients for large coefficients. 
The solution to the SCAD penalty is expressed as
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ĥ
SCAD
k, t ¼

sgnðĥ
OLS
k, t Þðjĥ

OLS
k, t j − ktÞþ if jĥ

OLS
k, t j � 2kt ,

ða−1Þĥ
OLS
k, t −sgnðĥ

OLS
k, t Þaλt

h i

=ða − 2Þ if 2kt < jĥ
OLS
k, t j � akt ,

ĥ
OLS
k, t if jĥ

OLS
k, t j > akt ,

8
>>><

>>>:

(2.8) 

where sgnð�Þ represents the sign function and ĥ
OLS
k, t is the ordinary least squares esti

mate. The optimal pair ðkt, aÞ can be theoretically obtained through a two-dimensional 
grid search using criteria like cross-validation and Bayesian information criterion (BIC), 
which can be quite computationally expensive. Based on Bayesian statistical principles 
and simulation studies, Fan and Li (2001) recommended setting a ¼ 3:7 as a good 
choice for diverse scenarios. They further showed that the choice of a does not signifi
cantly improve the performance of the whole process compared to kt: Moreover, Wang, 
Li, and Tsai (2007) demonstrated that the widely applied generalized cross-validation 
method often fails to appropriately select the tuning parameter, leading to significant 
overfitting in the model. They recommended a BIC-based tuning parameter selector, 
which consistently identifies the true model. In this study, we accordingly set a to be 
3.7, with kt chosen by BIC.

2.3. High-Dimensional and Sparse Settings

In the context of the high-dimensional and sparse model, we contemplate a scenario 
where the majority of regression coefficients are precisely zero. This implies that only 
a handful of predictors exhibit non-zero regression coefficients. Recall that, we pro
pose there are p� significant predictors and S significant lags of Yt in At: Let Wt ¼

ðWð1Þ
t , Wð2Þ

t Þ; where Wð1Þ
t is the submatrix of Wt containing those significant predic

tors and lags and Wð2Þ
t includes those trivial predictors and lags that are intended to 

be excluded from the model. Analogously, we denote ht ¼ ðh
ð1Þ
t , hð2Þt Þ and Mðu, vÞ

t ¼

1
n WðuÞ>

t WðvÞ
t ; where Mt ¼

1
n W>

t Wt and u, v ¼ 1, 2: In terms of equation (2.8), we have 

ĥ
SCAD
t ¼ ðĥ

SCAD
1, t , :::, ĥ

SCAD
pþt−1, tÞ

>
: Suppose A�t ¼ fj, s : b̂

SCAD
j, t 6¼ 0, ĝSCAD

S 6¼ 0g is the index 
set of the significant SCAD estimators based on the historical sample at time t with 

the cardinality jA�t j ¼ K�SCAD: We organize ĥ
SCAD
t as ðĥ

SCADð1Þ

t , ĥ
SCADð2Þ

t Þ; accordingly. 
To ascertain the asymptotic properties and derive the limiting distribution of the esti
mators within the high-dimensional and sparse framework, we incorporate the follow
ing supplementary regularity conditions (Zhao and Yu 2006), in conjunction 
with A1 − A6:

A7. There exists a positive constant C1 at time t such that 1
n W>

k Wk � C1 for all k ¼
1, :::, K and for all n;

A8. There exists a positive constant C2 such that f>Mð1, 1Þ
t f � C2 for all k f k2

2¼ 1;
A9. K� ¼ Oðnb1Þ for some 0 < b1 < 1;
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A10. There exist positive constants b2 and C3 such that b1 < b2 � 1 and 

nð1−b2Þ=2 min
k¼1, :::, p�, :::, p�þS

h
ð1Þ
t j � C3:

�
�
�

When both the predictors and the lags of Yt are normalized, A7 may become trivial. 
A8 necessitates that Mð1, 1Þ

t maintains eigenvalues bounded from below to ensure a 
proper inverse matrix. The assumption A9 addresses the divergence rate of the variable 
dimension p compared to the sample size n. It preserves the stability of the penalized 
estimator and ensures that the number of significant predictors K� grows at a controlled 
polynomial rate relative to n, preventing overfitting while maintaining a sparsity struc
ture in the model. The last assumption mandates a gap of size nb2 between the decay 
rates of h

ð1Þ
t and n−1

2; ensuring that the estimation is not overwhelmed by the error 
terms.

As a consequence, in the context of high-dimensional and sparse ADL under the 
assumptions A1 − A10; we propose that the SCAD penalized estimators satisfy the 
oracle property at time t, the proof of which is deferred to the Appendix according to 
(Kim, Choi, and Oh 2008).

� Consistency in variable selection, limn!1 PðA�t ¼ AtÞ ¼ 1;
�

ffiffiffi
n
p

Atðn−1Wð1Þ>
t Wð1Þ

t =r2Þ
1=2
ðĥ

SCADð1Þ

t − h
ð1Þ
t Þ!

d Nð0, HÞ; where At is an arbitrary 
matrix with AtA

>
t ! H and H is a K� � K� nonnegative symmetric matrix 

which includes the elements of Mt in the set At:

3. CHANGE POINT PROBLEM

The focus of this section is to test for possible changes in the parameters of the ADL 
model referring to equation (2.3). We study m panels and there are n observations in 
each panel. In other words, we have m� n observations forming the historical sample. 
After training the ADL model at time t ¼ m; the further incoming data fYt, Wtg; t ¼
mþ 1, mþ 2, ::: are monitored sequentially. Let Tm be the monitoring horizon. The his
torical ADL model is

Ym ¼Wmhm þ E: (3.1) 

The ADL model after historical data is

Yt ¼Wtht þ E, for t ¼ mþ 1, mþ 2, :::: (3.2) 

At each new time point t, our goal is to test whether the ADL model remains the 
same as the historical model. That is ht ¼ hm for all t ¼ mþ 1, mþ 2, :::: A change 
point occurs when ht 6¼ hm for any t ¼ mþ 1, mþ 2, ::::

In the context of the hypothesis testing, under the null hypothesis, there is no change 
in the coefficients

H0 : ht ¼ hm, for t ¼ mþ 1, mþ 2, :::: (3.3) 
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Under the alternative hypothesis, there exists s � 1 such that

Ha :
ht ¼ hm, for t ¼ mþ 1, :::, mþ s,
ht 6¼ hm, for t ¼ mþ sþ 1, :::, mþ Tm:

�

(3.4) 

Following Horv�ath and Hu�skov�a (2012), we consider the CUSUM of residuals

Cðm, n, sÞ ¼
1

r̂m

�
�
�
�
�

Xmþs

t¼mþ1
Êt

�
�
�
�
�
, (3.5) 

where Êt ¼
1
n
Pn

i¼1ðYi, t − Wi, tĥ
SCAD
t Þ at t ¼ mþ 1, mþ 2, :::; and r̂2

m is the estimated 
constant error variance, given by

r̂2
m ¼

1
ðm-maxfsgÞðn − K�SCADÞ

Xm

t¼maxfsgþ1

Xn

i¼1
ðYi, t − Wi, tĥ

SCAD
t Þ

" #2

(3.6) 

where s are the indices in A�t at time t. Given a constant c 2 ½0, 1=2Þ; a normalizing 
function gðm, s, cÞ is defined as

gðm, s, cÞ ¼ m1=2 1þ
s

m

� �
s

sþm

� �c

, (3.7) 

where c is the control parameter. We propose the test statistic for monitoring structural 
change according to Horv�ath and Hu�skov�a (2012),

X ¼ sup
1�s�Tm

Cðm, n, sÞ
gðm, s, cÞ

: (3.8) 

Set Tm <1 with limm!1 Tm=m ¼ N and N > 0: The stopping time for the monitor
ing process is given by

KðmÞ ¼ inffs � 1 : if Cðm, n, sÞ � gðm, s, cÞQaðcÞg,
Tm for all s ¼ 1, :::, Tm,

�

(3.9) 

where QaðcÞ is the ð1 − aÞth quantile of the asymptotic distribution such that, under 
the null hypothesis,

lim
m!1

PðKðmÞ <1Þ ¼ a: (3.10) 

Under the alternative hypothesis,

lim
m!1

PðKðmÞ <1Þ ¼ 1: (3.11) 

Theorem 3.1. Under assumptions A1-A10, when the null hypothesis holds, 

lim
m!1

PðX � QaðcÞÞ ¼ P sup
0�g�N=ðNþ1Þ

kWðgÞk1
gc

� QaðcÞ

 !

, 

where fWðgÞ, 0 � g <1g denotes the q−dimensional Wiener process, and q depicts the 
number of significant variables in the model in terms of historical data.

The asymptotic distribution of test statistics can be derived using Theorem 3.1. We 
obtain the asymptotic critical value QaðcÞ based on,

8 C. GU AND S. RATNASINGAM



P sup
0�g�N=ðNþ1Þ

kWðgÞk1
gc

� QaðcÞ

 !

¼ a, 

where 0 < a < 1 and 0 � c < 1=2:

Theorem 3.2. Under assumptions A1-A10, if the alternative hypothesis is true, we have 

sup
1�s�Tm

Cðm, n, sÞ
gðm, s, cÞ

! 1 as m!1:

The proofs of Theorems 3.1–3.2 are given in the supplementary material. Referring to 
Ratnasingam and Ning (2021) and Gu and Ratnasingam (2023), the asymptotic critical 
values for various c and N values are given in Table 1.

Ratnasingam and Ning (2021) and Gu and Ratnasingam (2023) suggest that the sensi
tivity of the monitoring process increases with larger c values. Thus, a sufficiently high 
value of gamma should be considered when we believe any change point occurs shortly 
after m in a simple linear model. In the following section, we conduct a simulation 
study to investigate this property in the ADL model.

4. SIMULATION STUDY

We consider the following three criteria that are commonly used as the determination 
of the quality of a sequential change point detection approach:

1. Type I error rate: Close to the nominal level,
2. Power of the test: Preferably close to 1,
3. Detection time under the alternative hypothesis: Stop as soon as possible after a 

change is noticed.

Below are two parameter settings for the ADL model, encompassing various condi
tions examined in this section. We generate data that satisfy stationarity, exogeneity, 
bounded eigenvalues, and the gap condition on nonzero coefficients, following assump
tions A1–A10. For instance, the error term is generated as independent and identically 

Table 1. Asymptotic critical values for various values of N and control parameter c:
c

a N 0.00 0.25 0.49

0.010 2 2.4471 2.8169 3.7326
4 2.6865 2.9540 3.7450
6 2.7858 3.0044 3.7472
9 2.8471 3.0451 3.7499

0.025 2 2.2118 2.5620 3.4637
4 2.4306 2.6815 3.4744
6 2.5148 2.7352 3.4786
9 2.5721 2.7675 3.4799

0.050 2 2.0209 2.3590 3.2573
4 2.2224 2.4698 3.2682
6 2.2974 2.5104 3.2717
9 2.3515 2.5393 3.2741
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distributed variables with finite fourth moments (A5), the predictors are normalized 
and constructed to avoid perfect multicollinearity (A4–A7), and the minimal signal con
dition (A10) holds by setting a sufficiently large gap between zero and nonzero coeffi
cients. Furthermore, all simulation outcomes are derived from 1,000 repetitions.

Setting I (Type I error calculations)

� Under H0; the true parameter vectors 

ht ¼

b6, t ¼ b8, t ¼ 1,
b5, t ¼ b7, t ¼ b9, t ¼ −1,
g1 ¼ 0:5,
0, Otherwise:

8
>><

>>:

(4.1) 

� The predictor variables Xj, t for all j 2 f1, :::, pg have standard normal distribu
tion Nð0, 1Þ:

� The model errors Et are i.i.d. Nð0, 1Þ:

Setting II (Stopping time and power analysis)

� Parameter settings under H0; distributions of Xj, t and Et are the same as 
Setting I.

� Scenario 1 under Ha; the true parameter vectors after t ¼ s 

ht ¼

b6, t ¼ b8, t ¼ 4,
b5, t ¼ b7, t ¼ b9, t ¼ −4,
g1 ¼ 0:5,
0, Otherwise:

8
>><

>>:

(4.2) 

� Scenario 2 under Ha; the true parameter vectors after t ¼ s 

ht ¼

b6, t ¼ b8, t ¼ 1,
b5, t ¼ b7, t ¼ b9, t ¼ −1,
g1 ¼ g2 ¼ 0:5,
0, Otherwise:

8
>><

>>:

(4.3) 

First, we conduct the Type I error analysis for the ADL model under varying condi
tions. The comparisons are made across different sample sizes (n ¼ 50, 100, 200) in 
each panel, different values of the control parameter c ð0, 0:25, 0:45Þ; different historical 
panel sizes (m ¼ 25, 50, 100), different ratios of monitoring and historical data 
(Tm

m ¼ N ¼ 2, 4, 6, 9), and different dimensions p ¼ 10, 100: The black-dashed horizontal 
line represents the nominal 5% Type I error level. In Figure 1, for p ¼ 10; we observe 
the empirical Type I error rates are overall controlled by the nominal level of 0.05. 
There are obvious patterns indicating the impacts of n, m, c; and N. When the sample 
size n and panel size m are both small in the historical data, the empirical Type I error 
rates are slightly inflated, and the simulation results suggest that a lower control param
eter c should be more appropriate to control the nominal Type I error under this con
dition. As n and m increase, a larger c is recommended to prevent the empirical Type I 
error from being deflated. In general, the empirical Type I error moves closer to the 
nominal level when N is getting larger, which indicates we have more monitoring data. 
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Figure 1. Comparison of Type I error rates for various ratios of monitoring and historical data N 2
f2, 4, 6, 9g; with different sample sizes n 2 f50, 100, 200g; panel sizes m 2 f25, 50, 100g; and different 
control parameter c 2 f0, 0:25, 0:45g when p ¼ 10:
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Comparing Figures 1 and 2, we observe that as p increases from 10 to 100, the Type I 
error rates tend to decrease. This is likely because with a higher dimension p, the test 
statistic becomes more sensitive to deviations from the null hypothesis, leading to 
a more conservative test and a lower Type I error. We notice the same patterns in 
Figure 2 when p goes up to 100.

Figures 3 and 5 present a power comparison for various ratios of monitoring and his
torical data under two distinct scenarios. In both figures, the x-axis represents change 
points ðsÞ; and the y-axis represents power. Figure 3 (Scenario 1) examines the power 
when change points are caused by changes in bt; while the lagged effects gS remain con
sistent. Figure 5 (Scenario 2) explores the power when change points are solely driven 
by the additional lagged effect. In Figure 3, a clear trend emerges: for a fixed N, smaller 
control parameters ðcÞ or later change points ðsÞ generally result in lower power. This 
is because smaller c values require a larger CUSUM to exceed the threshold, and later 
change points leave less time for the sum to accumulate. Conversely, power increases as 
the sample size (n) and panel size (m) increase, aligning with expectations. Larger n and 
m provide more data, leading to more accurate estimates and improved detection. The 
figure also shows that as N increases, indicating earlier change points, the detection 
power significantly increases. This is because CUSUM statistics are more effective at 
detecting early change points due to the longer time available for the CUSUM to exceed 
the threshold.

Figure 5 exhibits similar trends to Scenario 1. However, a key difference is that 
detecting changes in Scenario 2 is generally more challenging. This is because the lagged 
effects are typically smaller than 1, requiring more data to achieve comparable power 
levels. While the overall patterns are similar, the power values in Figure 5 tend to be 
lower than those in Figure 3 for comparable parameter settings. This suggests that 
detecting changes driven solely by lagged effects is more difficult than detecting changes 
in the direct effect (btÞ: For example, comparing the top-left plots (N ¼ 2, m ¼ 25) in 
both figures, the power in Figure 3 is noticeably higher than in Figure 5 for all change 
point locations. This difference highlights the impact of the change mechanism on the 
detection power. In both scenarios, the tradeoff between power and Type I error is cru
cial when selecting c; especially when historical data are limited. As n and m increase, a 
larger c becomes preferable.

Figures 4 and 6 present power comparisons for various ratios of monitoring and his
torical data, sample sizes, panel sizes, control parameters, and change point locations 
under two different scenarios, both with p ¼ 100: Figure 4 (Scenario 1) examines the 
power when change points are caused by changes in bt; while the lagged effects gS 
remain consistent, and Figure 6 (Scenario 2) explores the power when change points 
are solely driven by the additional lagged effect. In Figure 4, a clear trend emerges: for 
a fixed N, smaller control parameters (c) or later change points (s) generally result in 
lower power. Conversely, power increases as the sample size (n) and panel size (m) 
increase. The figure also shows that as N increases, indicating earlier change points, the 
detection power significantly increases. Figure 6 exhibits similar trends to Scenario 1. 
However, a key difference is that detecting changes in Scenario 2 is generally more chal
lenging. While the overall patterns are similar, the power values in Figure 6 tend to be 
lower than those in Figure 4 for comparable parameter settings. This suggests that 
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Figure 2. Comparison of Type I error rates for various ratios of monitoring and historical data N 2
f2, 4, 6, 9g; with different sample sizes n 2 f50, 100, 200g; panel sizes m 2 f25, 50, 100g; and different 
control parameter c 2 f0, 0:25, 0:45g when p ¼ 100:
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Figure 3. Scenario 1 – Power comparison for various ratios of monitoring and historical data N 2
f2, 4, 6, 9g; across different sample sizes n 2 f50, 100, 200g; panel sizes m 2 f25, 50, 100g; control 
parameters c 2 f0, 0:25, 0:45g; and change point locations s 2 f1, 10, 20g; when p ¼ 10:
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Figure 4. Scenario 1 – Power comparison for various ratios of monitoring and historical data N 2
f2, 4, 6, 9g; across different sample sizes n 2 f50, 100, 200g; panel sizes m 2 f25, 50, 100g; control 
parameters c 2 f0, 0:25, 0:45g; and change point locations s 2 f1, 10, 20g; when p ¼ 100:

SEQUENTIAL ANALYSIS 15



Figure 5. Scenario 2 – Power comparison for various ratios of monitoring and historical data N 2
f2, 4, 6, 9g; across different sample sizes n 2 f50, 100, 200g; panel sizes m 2 f25, 50, 100g; control 
parameters c 2 f0, 0:25, 0:45g; and change point locations s 2 f3, 10, 20g; when p ¼ 10:
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Figure 6. Scenario 2 – Power comparison for various ratios of monitoring and historical data N 2
f2, 4, 6, 9g; across different sample sizes n 2 f50, 100, 200g; panel sizes m 2 f25, 50, 100g; control 
parameters c 2 f0, 0:25, 0:45g; and change point locations s 2 f3, 10, 20g; when p ¼ 100:
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detecting changes driven solely by lagged effects is more difficult than detecting changes 
in the direct effect ðbtÞ: Comparing Figures 3 and 5 (with p ¼ 10) to Figures 4 and 6
(with p ¼ 100), we observe that the overall trends remain consistent. In both sets of fig
ures, smaller control parameters or later change points generally result in lower power, 
while power increases with sample size and panel size. However, the magnitude of the 
power values differs significantly between the two sets of figures. Specifically, the power 
values in Figures 3 and 5 ðp ¼ 10Þ are generally higher than those in Figures 4 and 6
ðp ¼ 100Þ for comparable parameter settings. This suggests that the detection power is 
higher when p ¼ 10 compared to when p ¼ 100; indicating that the choice of p signifi
cantly impacts the detection power.

In our simulation study, we use stopping time as a metric to assess the accuracy and 
efficacy of the proposed approach. Concurrently, we analyze the properties of different 
parameter configurations. Optimal settings for utilizing the approach are those where 
the monitored stopping time closely aligns with the actual change point. Similar to 
power analysis, we initially examine Scenario 1 across three distinct situations under 
p ¼ 10; assuming change points at s ¼ 1, 10; and 20, respectively. Figure 7 presents the 
median stopping time compared to the true change point. Overall, the proposed 
approach effectively identifies the change point across various settings. The results indi
cate a preference for a larger control parameter c in training the model if promptly 
stopping the detection process upon a change point occurrence is desired. Moreover, 
this trend becomes more pronounced as sample size n, historical panel size m, and 
monitoring data N increase. It is worth noting that as N increases while n and m are 
held constant, the stopping time becomes more delayed. However, we observe that 
increasing n and m can notably alleviate this delay.

Under Scenario 2 with p ¼ 10; as depicted in Figure 9, where only one additional 
lagged term of Yt occurs, our method consistently detects this change. Comparing 
Figures 7 and 9, we observe that the stopping times in Scenario 2 (Figure 9) tend to be 
slightly higher than those in Scenario 1 (Figure 7) for similar parameter settings. This 
suggests that detecting changes based on lagged terms of Yt might require a bit more 
time compared to detecting changes directly influenced by Xt; as in Scenario 1. The effi
cacy in Scenario 2 remains contingent upon the selection of c; aligning with the afore
mentioned findings illustrated in Figure 9. In contrast to Scenario 1, the observed 
stopping time exhibits less precision due to the smaller variations in lagged effects com
pared to the fluctuations induced by Xt in our settings. This coincides with the argu
ment in the power analysis, indicating that more data are required to identify a change 
point under this circumstance. These results are confirmed in higher dimensions of p, 
as demonstrated in Figures 8 and 10. We include the programming code and additional 
simulation results for p ¼ 200 and p ¼ 400 in the supplementary material.

5. REAL DATA APPLICATION

In this section, we apply the proposed sequential change point detection method to a 
dataset consisting of 84 features across 422 companies. As outlined in equation (2.2), 
we consider the following model to demonstrate the effectiveness of the proposed moni
toring procedure over time t:
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Figure 7. Scenario 1 – Median stopping time for various ratios of monitoring and historical data N 2
f2, 4, 6, 9g; across different sample sizes n 2 f50, 100, 200g; panel sizes m 2 f25, 50, 100g; control 
parameters c 2 f0, 0:25, 0:45g; and change point locations s 2 f1, 10, 20g; when p ¼ 10:
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Figure 8. Scenario 1 – Median stopping time for various ratios of monitoring and historical data N 2
f2, 4, 6, 9g; across different sample sizes n 2 f50, 100, 200g; panel sizes m 2 f25, 50, 100g; control 
parameters c 2 f0, 0:25, 0:45g; and change point locations s 2 f1, 10, 20g; when p ¼ 100:
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Figure 9. Scenario 2 – Median stopping time for various ratios of monitoring and historical data N 2
f2, 4, 6, 9g; across different sample sizes n 2 f50, 100, 200g; panel sizes m 2 f25, 50, 100g; control 
parameters c 2 f0, 0:25, 0:45g; and change point locations s 2 f3, 10, 20g; when p ¼ 10:
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Figure 10. Scenario 2 – Median stopping time for various ratios of monitoring and historical data 
N 2 f2, 4, 6, 9g; across different sample sizes n 2 f50, 100, 200g; panel sizes m 2 f25, 50, 100g; con
trol parameters c 2 f0, 0:25, 0:45g; and change point locations s 2 f3, 10, 20g; when p ¼ 100:
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Yt ¼Wtht þ E, 

where Wt ¼ ðXt , Yt−Þ and ht ¼ ðbt , gSÞ
>
:

Recall our discussions in Section 3, the historical ADL model is

Ym ¼Wmhm þ E:

The ADL model after historical data is

Yt ¼Wtht þ E, for t ¼ mþ 1, mþ 2, ::::

Under the null hypothesis, there is no change in the coefficients

H0 : ht ¼ hm, for t ¼ mþ 1, mþ 2, ::::

Under the alternative hypothesis, Tm is our monitoring horizon, a change point s 

occurs when there exists s � 1 such that

Ha :
ht ¼ hm, for t ¼ mþ 1, :::, mþ s,
ht 6¼ hm, for t ¼ mþ sþ 1, :::, mþ Tm:

�

Our dataset is accessible on Kaggle (Ebrahimi 2024). For this study, we consider 
“financial distress” as the response variable Y, and Yt− represents the lagged financial 
distress. A company is classified as healthy if its distress value exceeds −0:50:
Otherwise, it is considered financially distressed. The matrix X denotes the collection of 
predictor variables, in which there are 83 features, denoted x1 through x83; reflecting 
various financial and non-financial attributes of the companies. Due to privacy con
cerns, the specific feature variables are not disclosed. We also observe financial distress 
values over up to 14 time periods for these companies. The chosen data contains 132 
companies with complete observations for all 14 time periods.

To address the challenges posed by heteroscedasticity and outliers in this real-world 
data, it is often necessary to normalize the distribution of Y. This transformation helps 
stabilize the variance of residuals, thereby improving the model’s ability to meet the 
assumption of homoscedasticity. Additionally, normalizing Y can mitigate the influence 
of extreme values, making the model more robust and enhancing its predictive accur
acy. The histogram (a) and Q–Q plot (b) in Figure 11 reveal that the data do not follow 
a normal distribution, a result confirmed by the Kolmogorov–Smirnov test. 
Consequently, we apply the transformation signðYÞ � jYj1=2 to the response variable Y. 
The transformed data are depicted in the histogram (c) and Q-Q plot (d) in Figure 11.

Figure 12 depicts the transformed financial distress across 14 time periods for the 
selected 132 companies. The first 7 time periods are considered as historical panels, 
assuming no change points, i.e., m ¼ 7 and Tm ¼ 7: Intuitively, there is an indication of 
a potential change point at the last time period (t ¼ 14), following the historical panels. 
By applying the proposed approach, we seek to thoroughly evaluate whether the 
observed shift is statistically significant, thereby providing more robust evidence for 
structural changes in the financial distress patterns over time.

We first apply the proposed SCAD-penalized dynamic panel model to simultaneously 
estimate the effects of predictors and time effects on the response variable. Based on 
Table 2, the analysis identifies 43 significant predictors out of 83 financial and non- 
financial factors. It further demonstrates that financial distress in the two preceding 
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time periods significantly affects the current financial distress of the companies in the 
data. Following this, we employ the proposed CUSUM testing procedure to detect struc
tural changes in the distribution of Y over time t, at a confidence level of a ¼ 0:05: In 
this application, two different values of c are considered: 0.25 and 0.45. After the histor
ical period, we continue to monitor the process sequentially. For c ¼ 0:25; no change 

Figure 11. Normality check for financial distress.

Figure 12. Change point in transformed financial distress across 14 time periods (panels), with the 
initial 7 periods considered historical.
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points are identified, suggesting stability in the process. However, when c ¼ 0:45; a 
change point is detected at t ¼ 14; as shown in Figure 13. This result indicates a signifi
cant shift in the behavior of the response variable, highlighting the importance of select
ing an appropriate c value for effective change point detection.

6. CONCLUSION

Analyzing panel data poses significant challenges for researchers aiming to explore intri
cate relationships between variables and detect change points sequentially. The 

Table 2. Significant predictors and lags estimated by the proposed SCAD-penalized dynamic panel 
model.
Predictor Estimate Predictor Estimate Predictor Estimate

x1 −1:3916 x16 −0:5965 x31 1.9901
x2 −4:8224 x17 −1:0084 x32 1.2891
x3 −4:7779 x18 −0:2293 x33 −1:0013
x4 −0:3789 x19 11.5438 x34 −1:9113
x5 −2:4284 x20 −1:7763 x35 0.9516
x6 0.9848 x21 0.9226 x36 1.2376
x7 −1:0362 x22 3.7456 x37 0.2838
x8 3.1708 x23 −1:3097 x38 0.7219
x9 0.9733 x24 −1:8517 x39 0.0632
x10 2.5348 x25 −0:8667 x40 10.0792
x11 −1:7688 x26 −0:0637 x41 −6:3132
x12 −2:9114 x27 −0:3113 x42 −0:0701
x13 −2:4392 x28 −0:2007 x43 0.1479
x14 1.4981 x29 0.0537 y6 0.1031
x15 0.2699 x30 −0:1165 y5 0.0525

Figure 13. The CUSUM plot of residuals over successive panels, with red dashed lines indicating the 
detection thresholds at a ¼ 0:05: (a) c ¼ 0:45 and (b) c ¼ 0:25:
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outstanding models often require sophisticated solutions to handle the complexities of 
variable interactions over time and across different entities. These models efficiently 
capture the dynamics of the data, allowing for a nuanced exploration of causal effects 
and structural changes. They combine information from both cross-sectional units and 
time periods, providing comprehensive insights into the underlying processes. The 
desired characteristics include robustness to various data structures, flexibility to accom
modate different model specifications, and scalability to handle large datasets.

In this research, we focused on the SCAD-penalized ADL model which simplifies the 
complexity of GMM and IV models under specific assumptions. We introduced a 
CUSUM-based testing procedure to sequentially monitor structural changes in the mon
itoring data, extendable to high-dimensional settings. The consistency of our method 
and the oracle property of the resulting regularized estimators were examined. The 
asymptotic properties of the test statistics were established under both the null and 
alternative hypotheses. Our simulation results highlighted the impacts of panel size, his
torical sample size per panel, monitoring horizon, and control parameters. The pro
posed approach consistently identified changes in the subsequent monitoring timeframe 
across both simulated data and real data applications. With limited historical data, care
ful control parameter selection is essential to control Type I errors and maintain reason
able power. Given sufficient data, a higher control parameter improves alignment with 
nominal Type I error, enhances power, and increases stopping time accuracy. 
Furthermore, we will aim to relax certain constraints, requiring the exploration of more 
complex dynamic models such as GMM and IV. In addition, developing an enhanced 
testing procedure to distinguish changes caused by lagged effects, predictors, or both 
can be a valuable extension of this study.
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