## ORIGINAL ARTICLE

# Change Point Detection in Linear Failure Rate Distribution Under Random Censorship 

Suthakaran Ratnasingam ${ }^{1}$. Wei Ning ${ }^{2,3}$

Accepted: 9 November 2022
© Grace Scientific Publishing 2022


#### Abstract

In this paper, we develop a procedure for change point detection problem in the linear failure rate (LFR) distribution for random censored data. The asymptotic results of the associated test statistic have been established. Moreover, we construct the confidence sets for change locations based on the confidence distribution (CD). Simulations have been conducted to investigate the performance of the proposed procedure under different random censoring distributions. Two real data applications are provided to illustrate the detection procedure.


Keywords Change point • Linear failure rate • Confidence sets • Confidence distribution

## 1 Introduction

Change point analysis plays an important role in statistical analysis. The change point problem was initially introduced by $[13,14]$ to identify a single structural change in a parameter. Since then, it has been extensively studied in the literature. For example, [23,24] studied the Bayesian approach to detect changes in the mean of a normal distribution. Chen and Gupta [4] and Cosörgö and Horváth [5] and established asymptotic properties on various parametric change point models. The likelihood ratio test for the known and unknown variance for testing the mean change was discussed by [7]. The asymptotic null distribution of a single change point detection for known and unknown variance was investigated by [32]. The multiple change point problem was first considered by [30] who proposed a binary segmentation (BS) procedure, which

[^0]applies recursively to all subsequent partitions until no further significant change is detected. Chen and Gupta [3] studied the variance change point problem for univariate Gaussian model using the information criterion approach. The change point problem for generalized lambda distribution was studied by [11]. Ning et al. [10, 12] proposed nonparametric methods to detect the different types of changes in the mean. Ratnasingam and Ning [16] studied a confidence distribution based detection procedure for a skew normal change-point model incorporating modified information criterion. Recently, [18] proposed a method based on the modified information criterion and the confidence distribution for detecting and estimating changes in a three-parameter Weibull distribution.

Exponential, Rayleigh, linear failure rate, or generalized exponential distributions are often used in life-testing and reliability studies. The linear failure rate (LFR) distribution can be easily generalized to many well-known distributions such as the exponential distribution and the Rayleigh distribution. Bain [1] studied the statistical properties of the parameters of LFR distribution in the context of type II censorship. The probability density function of the LFR distribution is

$$
\begin{equation*}
f(x)=(\lambda+2 \beta x) e^{-\left(\lambda x+2 \beta x^{2}\right)}, \quad x>0, \lambda>0, \beta>0, \tag{1}
\end{equation*}
$$

where $\lambda$ and $\beta$ are the shape and scale parameters, respectively. The cumulative distribution function (CDF) of the LFR distribution is

$$
\begin{equation*}
F(x)=1-e^{-\left(\lambda x+\beta x^{2}\right)} \tag{2}
\end{equation*}
$$

The LFR hazard function is

$$
\begin{equation*}
h(x)=\frac{f(x)}{1-F(x)}=(\lambda+2 \beta x) \tag{3}
\end{equation*}
$$

where $x>0, \lambda>0, \beta>0$. The LFR distribution is very useful in life testing and reliability studies for modeling the life length of a system or component when failures occur randomly and also from aging or wear-out. The following are some useful properties of the LFR distribution.
a. If $\lambda=0$ and $\beta \neq 0$, then the LFR distribution is reduced to the Rayleigh distribution with parameter $\beta$.
b. If $\beta=0$ and $\lambda \neq 0$, then the LFR distribution is reduced to the exponential distribution with parameter $\lambda$.

The LFR distribution with its properties and applications has been studied extensively in the literature. For example, the recurrence relations for the moment of the order statistics from the LFR distribution were established by [2]. In the life-testing and reliability studies, [22] studied various LFR distribution properties and applications. The Monte Carlo methods for Bayesian inference on the linear hazard distribution were developed by [9]. Sarhan and Kundu [19] considered the generalized linear failure rate distribution and discussed its properties and the maximum likelihood estimations (MLEs). Recently, [17] studied the statistical properties of a new four-parameter called
as Lomax-linear failure rate distribution. To the best of our knowledge, a few works focus on the change point problem of the LFR distribution. In this paper, we propose a detection procedure regarding the LFR distribution based on the likelihood ratio test (LRT) under random censorship.

This paper is organized as follows. In Sect. 2, we develop a change point detection procedure for the LFR distribution and the procedure to construct the confidence set of a change with a given nominal level through the confidence distribution (CD). Simulations to investigate the performance of the proposed procedures in terms of powers, coverage probabilities, and lengths of confidence sets are conducted in Sect. 3. Two real data applications are given in Sect. 4 to illustrate the proposed procedures. Some discussion is provided in Sect. 5.

## 2 Main Results

### 2.1 Likelihood Ratio Test for LFR Distribution

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a sequence of independent observations belonging to a LFR distribution. The change point problem for a LFR distribution is defined as follows.

$$
X_{i} \sim \begin{cases}\operatorname{LFR}\left(\lambda_{L}, \beta_{L}\right) ; & i=1, \ldots, k  \tag{4}\\ \operatorname{LFR}\left(\lambda_{R}, \beta_{R}\right) ; & i=(k+1), \ldots, n\end{cases}
$$

where the PDF and CDF of LFR distribution are given in (1) and (15), respectively. We are testing the following hypotheses.

$$
H_{0}: \lambda_{1}=\lambda_{2}=\cdots=\lambda_{n}=\lambda ; \quad \beta_{1}=\beta_{2}=\cdots=\beta_{n}=\beta
$$

versus

$$
H_{1}: \underbrace{\lambda_{1}=\cdots=\lambda_{k}}_{\lambda_{L}} \neq \underbrace{\lambda_{k+1}=\cdots=\lambda_{n}}_{\lambda_{R}} ; \quad \underbrace{\beta_{1}=\cdots=\beta_{k}}_{\beta_{L}} \neq \underbrace{\beta_{k+1}=\cdots=\beta_{n}}_{\beta_{R}},
$$

where $(\lambda, \beta),\left(\lambda_{L}, \beta_{L}\right)$ and $\left(\lambda_{R}, \beta_{R}\right)$ are unknown parameters and need to be estimated. Further, $k$ is the unknown change location and needs to be estimated as well. Let $1<r<n$ be a natural number and is the number of observations presented if the data sample is censored. Suppose $X_{1}, \ldots, X_{r}$ denotes the $r$ smallest observations from a sample of size $n$ from the LFR model. Following [22], the likelihood function of the LFR distribution is,

$$
\begin{equation*}
L=\frac{n!}{(n-r)!} \prod_{i=1}^{r}\left(\lambda+2 \beta X_{(i)}\right) \exp \left(-\left(\lambda U_{1}+\beta U_{2}\right)\right) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{1}=\sum_{i=1}^{r} X_{(i)}+(n-r) X_{(r)} \quad \text { and } \quad U_{2}=\sum_{i=1}^{r} X_{(i)}^{2}+(n-r) X_{(r)}^{2} . \tag{6}
\end{equation*}
$$

Under the null hypothesis, the log-likelihood function is given as,

$$
\begin{equation*}
l_{H_{0}}=\log \left(L_{0}\right)=\log \left(\frac{n!}{(n-r)!}\right)+\sum_{i=1}^{r}\left\{\log \left(\lambda+2 \beta X_{(i)}\right)-\left(\lambda U_{1}+\beta U_{2}\right)\right\} \tag{7}
\end{equation*}
$$

The first derivatives of the log likelihood function are given as below.

$$
\frac{\partial l_{H_{0}}}{\partial \lambda}=\sum_{i=1}^{r} \frac{1}{\left(\lambda+2 \beta x_{i}\right)}-U_{1}, \quad \text { and } \quad \frac{\partial l_{H_{0}}}{\partial \beta}=\sum_{i=1}^{r} \frac{2 x_{i}}{\left(\lambda+2 \beta x_{i}\right)}-U_{2}
$$

We note that the likelihood function in (5) is defined for censored data if $r<$ $n$. If $n=r$, the complete sample is considered. Then, for a complete sample, $U_{1}$ and $U_{2}$ can be simplified as follows.

$$
U_{1}=\sum_{i=1}^{n} X_{(i)} \quad \text { and } \quad U_{2}=\sum_{i=1}^{n} X_{(i)}^{2},
$$

According to [1], we have

$$
\begin{equation*}
\hat{\lambda} U_{1}+\hat{\beta} U_{2}=r . \tag{8}
\end{equation*}
$$

where $U_{1}$ and $U_{2}$ are defined in (6), and $\hat{\lambda}$ and $\hat{\beta}$ are MLEs of $\lambda$ and $\beta$. We can solve Eq. (8) for $\hat{\lambda}$ and consider $\hat{\lambda}$ as a function of $\hat{\beta}$, then we may substitute $\hat{\lambda}=\hat{\lambda}(\hat{\beta})$ into the likelihood function while treating the other occurrence of $\beta$ as $\hat{\beta}$. Bain [1] proposed this idea to achieve a reduction of the MLE problem to a single-variable iterative procedure which reduces the two-variable iteration to that in a single variable say $\hat{\beta}$ through the so-called pseudo-likelihood function. Using the relation (8) and the likelihood function (5) we construct the pseudo-likelihood,

$$
\begin{equation*}
L=\frac{n!}{(n-r)!} \prod_{i=1}^{r}\left\{\left(\frac{r-\beta U_{2}}{U_{1}}\right)+2 \beta X_{(i)}\right\} \exp (-r) . \tag{9}
\end{equation*}
$$

Then, the pseudo log-likelihood function of the LFR distribution is

$$
\begin{equation*}
l_{H_{0}}(\lambda, \beta)=\sum_{i=1}^{r}(n-r+i)+\sum_{i=1}^{r} \log \left\{\left(\frac{r-\beta U_{2}}{U_{1}}\right)+2 \beta X_{(i)}\right\}-r . \tag{10}
\end{equation*}
$$

Now the maximum likelihood estimate (MLE) of $\beta$ is obtained by

$$
\begin{align*}
\frac{\partial l_{H_{0}}(\lambda, \beta)}{\partial \beta} & =\frac{\partial}{\partial \beta}\left[\sum_{i=1}^{r} \log \left\{\left(\frac{r-\beta U_{2}}{U_{1}}\right)+2 \beta X_{(i)}\right\}\right] \\
& =\sum_{i=1}^{r}\left[\left(\frac{U_{1}}{r-\beta U_{2}+2 \beta X_{(i)} U_{1}}\right) \cdot \frac{\partial}{\partial \beta}\left(\frac{r}{U_{1}}+\frac{1}{U_{1}}\left(2 \beta X_{(i)} U_{1}-\beta U_{2}\right)\right)\right] \\
& =\sum_{i=1}^{r}\left[\left(\frac{U_{1}}{r-\beta U_{2}+2 \beta X_{(i)} U_{1}}\right) \cdot \frac{1}{U_{1}} \cdot\left(2 X_{(i)} U_{1}-U_{2}\right)\right] \\
& =\sum_{i=1}^{r}\left[\frac{2 U_{1} X_{(i)}-U_{2}}{r-\beta U_{2}+2 \beta X_{(i)} U_{1}}\right] \tag{11}
\end{align*}
$$

Similar to [1,22], we let $h(\beta)$ as

$$
\begin{equation*}
h(\beta)=\sum_{i=1}^{r}\left[\frac{2 U_{1} X_{(i)}-U_{2}}{r-\beta U_{2}+2 \beta X_{(i)} U_{1}}\right] . \tag{12}
\end{equation*}
$$

Taking the first derivative of $h$ gives

$$
\begin{align*}
\frac{\partial h(\beta)}{\partial \beta} & =\sum_{i=1}^{r}\left[-\left(\frac{2 U_{1} X_{(i)}-U_{2}}{\left(r-\beta U_{2}+2 \beta X_{(i)} U_{1}\right)^{2}}\right) \cdot\left(-U_{2}^{2}+2 U_{1} X_{(i)}\right)\right] \\
& =-\sum_{i=1}^{r}\left[\frac{\left(2 U_{1} X_{(i)}-U_{2}\right)^{2}}{\left(r-\beta U_{2}+2 \beta X_{(i)} U_{1}\right)^{2}}\right]<0 \tag{13}
\end{align*}
$$

Therefore, the unique value of $\beta$ such that $h(\beta)=0$ for $\hat{\beta} \in\left(0, \frac{r}{U_{2}}\right)$. The MLE of $\lambda$ is

$$
\begin{equation*}
\hat{\lambda}=\frac{r-\hat{\beta} U_{2}}{U_{1}} . \tag{14}
\end{equation*}
$$

Remark The "pseudo-likelihood" method proposed by [1] simplifies the estimation procedure; however, this method is easy to produce misleading results as pointed out by [22]. To tackle this issue, [1] suggested the range of searching $\hat{\beta}$ be restricted within $\left(0, r / U_{2}\right)$. Sen and Bhattacharyya [22] also verified that the solution found in this restricted range is indeed the solution of the original likelihood function, that is, maximizes the original likelihood function. This restricted range is satisfied due to Eq. (8).

Suppose $X_{1}, \ldots, X_{k}$ be a sequence of independent random variables with the density function $f\left(x, \Theta_{L}\right)$ and $X_{k+1}, \ldots, X_{n}$ coming from the population with the density
function $f\left(x, \Theta_{R}\right)$. Now the log-likelihood function is defined as

$$
\begin{equation*}
\ell\left(k, \Theta_{L}, \Theta_{R}\right)=\sum_{i=1}^{k} \log \left(f\left(x_{i}, \Theta_{L}\right)\right)+\sum_{i=k+1}^{n} \log \left(f\left(x_{i}, \Theta_{R}\right)\right) \tag{15}
\end{equation*}
$$

where $\Theta_{L}$ and $\Theta_{R}$ are the parameter space of the pre-change and post-change distributions, respectively. Thus, under the alternative hypothesis, the log-likelihood function is,

$$
\begin{align*}
l_{H_{1}}=\log \left(L_{1}\right)= & l_{H_{1}}\left(k, \lambda_{L}, \beta_{L}, \lambda_{R}, \beta_{R}\right)=\sum_{i=1}^{k} \log \left(f\left(x_{i}, \lambda_{L}, \beta_{L}\right)\right) \\
& +\sum_{i=k+1}^{n} \log \left(f\left(x_{i}, \lambda_{R}, \beta_{R}\right)\right) \tag{16}
\end{align*}
$$

The MLEs of $\lambda_{L}, \beta_{L}, \lambda_{R}$, and $\beta_{R}$ can be estimated by solving the following equations.

$$
\frac{\partial l_{H_{1}}}{\partial \lambda_{L}}=0, \quad \frac{\partial l_{H_{1}}}{\partial \beta_{L}}=0, \quad \frac{\partial l_{H_{1}}}{\partial \lambda_{R}}=0, \quad \text { and } \quad \frac{\partial l_{H_{1}}}{\partial \beta_{R}}=0
$$

The log-likelihood ratio can be defined as,

$$
\begin{equation*}
\Lambda_{k}=-2 \log \left(\frac{L_{0}}{L_{1}}\right)=-2\left\{\log L_{0}-\log L_{1}\right\} \tag{17}
\end{equation*}
$$

The log-likelihood ratio test statistic $Z_{n}$ can be obtained as $Z_{n}=\max _{1<k<n} \Lambda_{k}$. We have sufficient evidence to reject the null hypothesis for a large value of the loglikelihood ratio test statistic $Z_{n}$ if there exists a change. If the change point location is in the beginning or the end of the data set, we may not have enough observations to estimate the MLEs of the parameters. Thus, we consider the trimmed version of the test statistic. Reprising [34], the trimmed version of the test statistic is defined as follows.

$$
\begin{equation*}
\widetilde{Z}_{n}=\max _{\ell<k<n-\ell} \Lambda_{k}, \tag{18}
\end{equation*}
$$

where $\ell=2[\log (n)]$. We can estimate the change point by $\hat{k}$ such that

$$
\begin{equation*}
\hat{k}=\max _{\ell<k<n-\ell} \Lambda_{k} \tag{19}
\end{equation*}
$$

This procedure can easily be replicated if a second change point is suspected.
Theorem 2.1 Under the null hypothesis, as $n \longrightarrow \infty$, for all $t \in \mathbb{R}$, we have

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} P\left(a \log u(n) \widetilde{Z}_{n} \frac{1}{2}-b \log u(n) \leq t\right)=e^{-e^{t}} \tag{20}
\end{equation*}
$$

where

$$
\begin{aligned}
a(\log u(n)) & =(2 \log \log u(n))^{1 / 2} \\
b(\log u(n)) & =2 \log \log u(n)+\frac{3}{2} \log \log \log u(n)-\log \Gamma\left(\frac{3}{2}\right), \\
u(n) & =\frac{n^{2}-2 n \log (n)+(2 \log (n))^{2}}{(2 \log n)^{2}}
\end{aligned}
$$

Proof Following [5] Theorem 1.3.1,

$$
\begin{aligned}
1-\alpha= & P\left(\widetilde{Z}_{n}<C_{n}^{\alpha} \mid H_{0}\right) \\
= & P\left(\left.0<\widetilde{Z}_{n} \frac{1}{2}<C_{n}^{\alpha} \right\rvert\, H_{0}\right) \\
= & P\left(-b \log u(n)<a \log (u(n)) \widetilde{Z}_{n} \frac{1}{2}-b \log u(n)\right. \\
& \left.<a \log u(n)\left(C_{n}^{\alpha}\right)^{1 / 2}-b \log u(n) \mid H_{0}\right) \\
= & P\left(\left.a \log u(n) \widetilde{Z}_{n} \frac{1}{2}-b \log u(n)<a \log u(n)\left(C_{n}^{\alpha}\right)^{1 / 2}-b \log u(n) \right\rvert\, H_{0}\right) \\
& -P\left(\left.a \log u(n) \widetilde{Z}_{n} \frac{1}{2}-b \log u(n)<-b \log u(n) \right\rvert\, H_{0}\right) \\
\approx & \exp \left\{-\exp \left\{b \log u(n)-a \log u(n)\left(C_{n}^{\alpha}\right)^{1 / 2}\right\}\right\}-\exp \{-\exp \{b \log u(n)\}\} .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
C_{n}^{\alpha} \approx\left[\frac{\log (-\log (1-\alpha+\exp \{-\exp \{b \log u(n)\}\}))-b \log u(n)}{-a \log u(n)}\right]^{2} \tag{21}
\end{equation*}
$$

The theoretical critical values for the change point problem can be approximated through Eq. (21). However, the theoretical critical values are unreliable when the sample size is considerably small. Thus, we compute the asymptotic critical values for the testing problem via simulations as follows. First, we generate data with various sample sizes $X_{1}, X_{2}, \ldots, X_{n}$ from $\operatorname{LFRD}(1,1)$. The censoring time observations $Y_{1}, Y_{2}, \ldots, Y_{n}$ are from $\operatorname{Uniform}\left(0, \theta_{1}\right)$ and $\operatorname{Exp}\left(\theta_{2}\right)$, where $\theta_{1}$ and $\theta_{2}$ are the censoring parameters which determine the censoring proportion of $X_{1}, X_{2}, \ldots, X_{n}$. Three different values of $\theta=\left\{\theta_{1}, \theta_{2}\right\}$ to achieve 10, 20, and $30 \%$ censoring proportion of $X_{1}, X_{2}, \ldots, X_{n}$ are calculated by $P(X \geq Y)=10 \%, P(X \geq Y)=20 \%$, and $P(X \geq Y)=30 \%$, respectively. For example, when the censoring proportion is $10 \%$,
the censoring parameter $\theta$ can be obtained in the following way.

$$
\begin{aligned}
P(\delta=1 \mid \lambda, \beta, \theta) & =P(Y \leq X \leq \infty, 0 \leq Y \leq \theta) \\
0.1 & =\frac{1}{\theta} \int_{0}^{\theta}\left(1-e^{-\left(\lambda x+\beta x^{2}\right)}\right) \mathrm{d} x .
\end{aligned}
$$

The censoring parameter $\theta$ is selected for 10,20 , and $30 \%$ are $0.188,0.376$, and 0.565 , respectively. We provide steps to obtain critical values via simulation as follows.

Step 1: We generate data with various sample sizes $X_{1}, X_{2}, \ldots, X_{n}$ from $\operatorname{LFRD}(1,1)$. The censoring time observations $Y_{1}, Y_{2}, \ldots, Y_{n}$ generated from $\operatorname{Uniform}(0, \theta)$ or $\operatorname{Exp}(\theta)$, where $\theta$ is the censoring parameter and it takes values $0.188,0.376$, and 0.565 for the desired nominal censoring proportions of 10,20 , and $30 \%$, respectively.
Step 2: For each generated sample, we calculate the log-likelihood ratio test statistic $\widetilde{Z}_{n}$.
Step 3: We repeat the above steps $N=1000$ times. Then the critical value is the $100(1-\alpha)$ th quantile of the asymptotic distribution obtained in Step 2, where the significance level $\alpha=0.01,0.05$, and 0.1 .

The asymptotic critical values are presented in Table 1.

### 2.2 Confidence Distribution, Profile Log-Likelihood and Deviance Function

Confidence distributions (CD) are distribution estimates to be interpreted as distributions of epistemic probabilities. The concept of a CD is analogous to a point estimator which may be considered a sample-dependent distribution that describes confidence intervals of all levels for a parameter of interest. Schweder and Hjort [20] provides a formal definition of the CD. In addition, the theoretical properties of the CD were extensively investigated by [21]. A detailed study of recent developments in CD has been given by [33]. More applications of the CD, such as bootstrap distributions, p-value functions, normalized likelihood functions, and Bayesian posteriors, among others, can be found in the literature. Interested readers may refer to [20, 25-28].

Cunen et al. [6] investigated the CD for change point analysis and construct confidence curves for change locations using the log-likelihood approach. Ratnasingam and Ning [16] examined the change point detection procedure based on the CD combined with the modified information criterion (MIC) to construct the confidence set for the change estimate for a skew normal change point model. In this paper, we study the CD-based procedure along with log-likelihood for LFR distribution with predefined censoring rates. Next, we define a procedure to construct a confidence curve for the LFR change point model.

By maximizing the log-likelihood function defined in (15) of a given $k$, we can obtain the profile log-likelihood function as follows.

$$
\begin{equation*}
\ell_{\mathrm{prof}}(k)=\max _{\Theta_{L}, \Theta_{R}}\left(\ell\left(k, \Theta_{L}, \Theta_{R}\right)\right)=\ell\left(k, \hat{\Theta}_{L}, \hat{\Theta}_{R}\right), \tag{22}
\end{equation*}
$$

Table 1 Critical values

| Censoring proportion | $n$ | $\alpha$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0.10 |  | 0.05 |  | 0.01 |  |
|  |  | Unif | Exp | Unif | Exp | Unif | Exp |
| 10\% | 50 | 5.0479 | 5.7437 | 5.6971 | 6.4269 | 6.9139 | 7.8907 |
|  | 70 | 5.2766 | 6.1986 | 5.9888 | 6.8573 | 7.1433 | 8.4002 |
|  | 80 | 5.5543 | 6.2500 | 6.1159 | 7.0724 | 7.2960 | 9.4135 |
|  | 100 | 5.6800 | 6.4602 | 6.3707 | 7.0710 | 8.6988 | 8.6506 |
|  | 120 | 5.9543 | 6.8043 | 6.5633 | 7.5445 | 8.0500 | 8.5234 |
|  | 150 | 6.1471 | 7.1785 | 6.8932 | 7.8760 | 8.7705 | 8.8895 |
|  | 180 | 6.5444 | 7.1809 | 7.2683 | 7.8028 | 9.2532 | 9.4725 |
|  | 200 | 6.7155 | 7.6634 | 7.4235 | 8.4876 | 9.2955 | 10.1574 |
|  | 250 | 7.0765 | 7.7644 | 7.7020 | 8.6036 | 9.5498 | 10.8396 |
|  | 300 | 7.2570 | 7.8172 | 8.1147 | 8.5838 | 9.6960 | 9.6316 |
| 20\% | 50 | 5.1018 | 5.8791 | 5.5282 | 6.4193 | 6.7381 | 8.1416 |
|  | 70 | 5.3899 | 6.2923 | 6.1077 | 7.0305 | 7.2452 | 8.7102 |
|  | 80 | 5.6840 | 6.5105 | 6.4724 | 7.1967 | 7.8984 | 9.0336 |
|  | 100 | 5.7330 | 6.8311 | 6.4448 | 7.6074 | 8.0667 | 9.4676 |
|  | 120 | 6.2675 | 6.9218 | 6.9924 | 7.6315 | 8.9820 | 8.7816 |
|  | 150 | 6.4339 | 7.1589 | 7.1341 | 7.8910 | 8.6351 | 9.3840 |
|  | 180 | 6.5514 | 7.4047 | 7.2280 | 8.2279 | 8.8312 | 9.8598 |
|  | 200 | 6.6457 | 7.5086 | 7.3258 | 8.3124 | 8.8651 | 9.8869 |
|  | 250 | 6.7988 | 7.6448 | 7.4857 | 8.1717 | 9.1376 | 9.7778 |
|  | 300 | 7.0682 | 8.0576 | 7.7797 | 8.9030 | 9.1660 | 10.4283 |
| 30\% | 50 | 5.1473 | 5.9394 | 5.7756 | 6.5365 | 7.1700 | 8.3375 |
|  | 70 | 5.5544 | 6.2517 | 6.0702 | 7.0560 | 7.7614 | 9.2413 |
|  | 80 | 5.7875 | 6.6184 | 6.6001 | 7.5314 | 7.8760 | 9.4933 |
|  | 100 | 6.0460 | 6.5152 | 6.7817 | 7.3224 | 8.2742 | 9.1177 |
|  | 120 | 6.2877 | 6.8603 | 6.9330 | 7.7574 | 8.8020 | 9.6408 |
|  | 150 | 6.4321 | 7.1060 | 7.2360 | 7.7950 | 8.8030 | 9.1790 |
|  | 180 | 6.5584 | 7.4027 | 7.1352 | 8.1393 | 8.8008 | 9.1584 |
|  | 200 | 6.6701 | 7.6056 | 7.5470 | 8.2645 | 9.2626 | 9.7597 |
|  | 250 | 6.9870 | 7.7921 | 7.6455 | 8.6692 | 8.5804 | 10.6687 |
|  | 300 | 7.1211 | 7.9195 | 7.8438 | 8.6550 | 9.8231 | 10.2005 |

where $\hat{\Theta}_{L}$ and $\hat{\Theta}_{R}$ are MLEs of $\Theta_{L}$ and $\Theta_{R}$, respectively. The estimated change point location $\hat{k}$ corresponds to the $\max _{k}\left(\ell_{\text {prof }}(k)\right)$. The deviance function is defined as

$$
\begin{equation*}
\mathcal{D}(k, \mathbf{x})=2\left[\ell_{\operatorname{prof}}(\hat{k})-\ell_{\text {prof }}(k)\right] \tag{23}
\end{equation*}
$$

where $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. The confidence curve for $k$ based on the deviance function can be obtained through simulation.

$$
\begin{equation*}
c c\left(k, \mathbf{x}_{\mathrm{obs}}\right)=\varphi_{k}\left(\mathcal{D}\left(k, \mathbf{x}_{\mathrm{obs}}\right)\right)=P_{k, \hat{\Theta}_{L}, \hat{\Theta}_{R}}\left(\mathcal{D}(k, \mathbf{x})<\mathcal{D}\left(k, \mathbf{x}_{\mathrm{obs}}\right)\right) . \tag{24}
\end{equation*}
$$

where the $c c\left(k, \mathbf{x}_{\text {obs }}\right)<\alpha$ under the true value of $k$. By simulation, we compute

$$
\begin{equation*}
c c\left(k, \mathbf{x}_{\mathrm{obs}}\right)=\frac{1}{B} \sum_{j=1}^{B} I\left(D\left(k, \mathbf{x}_{j}^{*}\right)<D\left(k, \mathbf{x}_{\mathrm{obs}}\right)\right), \tag{25}
\end{equation*}
$$

for a large number of $B$ of simulated copies of dataset $\mathbf{x}_{\text {obs }}$. For each possible value of $k$, we simulated data $\mathbf{x}_{j}^{*}, j=1, \ldots, B$ from $f\left(\mathbf{x}, \Theta_{L}\right)$ and $f\left(\mathbf{x}, \Theta_{R}\right)$ to the left and right side of $k$, respectively. Furthermore, the change point location is estimated by (19). For more details, we refer the readers to $[6,16]$.

## 3 Simulation Study

In this section, we conduct a simulation study to evaluate the performance of the proposed method. First, we verify the null asymptotic distribution of $\widetilde{Z}_{n}$ stated in Theorem 2.1 numerically. The data is obtained from $\operatorname{LFRD}(1,1)$. For different sample sizes $n=\{50,100,200\}$ and various censoring proportions, we sketch the standard Gumbel distribution quantile-quantile (Q-Q) plot for $\widetilde{Z}_{n}$ values in Figs. 1, 2 and 3. According to the graphs, we observe that the null asymptotic distribution of $\widetilde{Z}_{n}$ can be approximated to the standard Gumbel distribution and fit reasonably well when the sample size increases. This confirms the result given in Theorem 2.1.

Secondly, we conduct the power simulation study. In this case, simultaneous changes in the parameters are considered. The pre-change data are always generated from $\operatorname{LFRD}(1,1)$. The post-change data are generated from $\operatorname{LFRD}(1.25,1.25)$, $\operatorname{LFRD}(1.5,1.5)$, $\operatorname{LFRD}(1.75,1.75)$, and LFRD (2, 3). Simulations are conducted for sample sizes $n=50,100$, and 150 . The values of true change point $k$ are chosen to be $\{15,20,25\},\{25,35,50\},\{25,50,75\}$ for sample sizes 50,100 , and 150 , respectively. In our simulations, we consider only the true change-point positions below or equal to the midpoint of the data set due to the symmetric property of the performance. We generate the censoring time with different censoring times from a uniform distribution and an exponential distribution with different censoring rates considering 10,20 , and $30 \%$. The results are based on 1000 replications. The results are summarized in Tables 2, 3 and 4 . We notice that when the difference between the parameters increases the test power increases. For example, in Table 2 for sample size $n=50, \alpha=0.05, k=15, \lambda=1.25$, and $\beta=1.25$ the power is 0.105 , however, the power is 0.526 when $\lambda=1.5$, and $\beta=2.5$. Based on Tables 2,3 and 4 , it is evident that the power of the test increases as the sample size $n$ increases. From the simulation results, we observe that the power of the test increases as the increase of censoring proportion when the censoring distribution is Exponential. For instance, when the sample size $n=50, k=15$, and the censoring proportion is $10 \%$, the power


Fig. 1 The Gumbel Q-Q plot of $\widetilde{Z}_{n}$ for $n=50$ for complete, and various censoring proportions, 10, 20, and $30 \%$
of the test is 0.842 . The power increases to 0.845 and 0.856 as a censoring proportion increases to 20 and $30 \%$, respectively.

Next, we conduct a simulation study for the coverage probability and confidence sets of the change point estimator. We consider various sample sizes, including $n=\{50,100,150\}$, and the nominal level $\alpha=\{0.90,0.95,0.99\}$. Under the null hypothesis, the data are generated from $\operatorname{LFRD}(1,1)$. The post-change data are generated from $\operatorname{LFRD}(1.25,1.25), \operatorname{LFRD}(1.5,1.5), \operatorname{LFRD}(1.75,1.75)$, and $\operatorname{LFRD}(2,3)$. We generate the censoring time with different censoring times from an exponential distribution with different censoring rates, considering 10, 20, and $30 \%$. We consider two criteria to determine the goodness of the procedure. They are the coverage probability and average size of confidence sets where the size of a confidence set is defined by the number of estimated $k$ belonging to the confidence set for a given nominal level $\alpha$. In general, if the procedure is good, then it should lead to a narrower confidence set $\{k: c c(k, x) \leq \alpha\}$ and the coverage probability preferably close to the nominal level $\alpha$. The results are summarized in Tables 5 and 6 . For example, in Table 5 for sample size $n=50, k=15, \lambda=1.25, \beta=1.25, \alpha=0.50$, and censoring proportion is $10 \%$ the coverage probability is 0.39 , and the average size of the confidence set is 17.30 . As the differences between $\lambda$ and $\beta$ increase, we see a corresponding increase in the


Fig. 2 The Gumbel Q-Q plot of $\widetilde{Z}_{n}$ for $n=100$ for complete, and various censoring proportions, 10, 20, and $30 \%$
coverage probability ( CP ) and decrease in the average size of confidence sets. We also observe that the censoring proportion increases the coverage probability decreases (Table 7).

## 4 Applications

In this section, we apply the proposed testing procedure to two real data sets. The first data set is from the R package survival: Veterans administration lung cancer data and the second data set is from the R package relsurv: acute myocardial infarction data set. As the censoring distribution, the uniform distribution is used in both applications.

### 4.1 Veterans' Administration Lung Cancer Study

We adopt the veterans' administration lung cancer data in the survival package. The data were initially studied by [8]. Survival times are classified into two categories based on the two treatment regimens for lung cancer and the patient's age survival times in two groups. Group 1 consists of 69 patients, while Group 2 consists of 68


Fig. 3 The Gumbel Q-Q plot of $\widetilde{Z}_{n}$ for $n=200$ for complete, and various censoring proportions, 10, 20, and $30 \%$

Table 2 Power comparison for sample size $n=50$ and $k=\{15,20,25\}$

| Censoring Proportion | $k$ | LFRD | , $\beta$ ) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | (1.25, | 25) | (1.5, 2 |  | (1.75, |  | $(2,3)$ |  |
|  |  | Unif | Exp | Unif | Exp | Unif | Exp | Unif | Exp |
| 10\% | 15 | 0.677 | 0.842 | 0.705 | 0.989 | 0.714 | 0.998 | 0.754 | 1.000 |
|  | 20 | 0.683 | 0.849 | 0.719 | 0.988 | 0.725 | 0.999 | 0.768 | 1.000 |
|  | 25 | 0.716 | 0.853 | 0.792 | 0.991 | 0.780 | 1.000 | 0.750 | 1.000 |
| 20\% | 15 | 0.770 | 0.845 | 0.790 | 0.986 | 0.852 | 0.998 | 0.860 | 1.000 |
|  | 20 | 0.778 | 0.856 | 0.799 | 0.988 | 0.859 | 0.999 | 0.886 | 1.000 |
|  | 25 | 0.789 | 0.872 | 0.805 | 0.992 | 0.865 | 1.000 | 0.895 | 1.000 |
| 30\% | 15 | 0.775 | 0.856 | 0.833 | 0.988 | 0.877 | 0.997 | 0.909 | 1.000 |
|  | 20 | 0.792 | 0.871 | 0.849 | 0.989 | 0.872 | 0.999 | 0.918 | 1.000 |
|  | 25 | 0.812 | 0.861 | 0.869 | 0.994 | 0.902 | 1.000 | 0.949 | 1.000 |

Table 3 Power comparison for sample size $n=100$ and $k=\{25,35,50\}$

| Censoring proportion | $k$ | $\underline{\operatorname{LFRD}(\lambda, \beta)}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | (1.25, 1.25) |  | (1.5, 2.5) |  | (1.75, 2.75) |  | $(2,3)$ |  |
|  |  | Unif | Exp | Unif | Exp | Unif | Exp | Unif | Exp |
| 10\% | 25 | 0.812 | 0.999 | 0.844 | 1.000 | 0.845 | 1.000 | 0.889 | 1.000 |
|  | 35 | 0.835 | 1.000 | 0.861 | 1.000 | 0.882 | 1.000 | 0.905 | 1.000 |
|  | 50 | 0.851 | 1.000 | 0.878 | 1.000 | 0.881 | 1.000 | 0.911 | 1.000 |
| 20\% | 25 | 0.849 | 1.000 | 0.901 | 1.000 | 0.935 | 1.000 | 0.961 | 1.000 |
|  | 35 | 0.858 | 1.000 | 0.924 | 1.000 | 0.950 | 1.000 | 0.980 | 1.000 |
|  | 50 | 0.876 | 1.000 | 0.947 | 1.000 | 0.967 | 1.000 | 0.985 | 1.000 |
| 30\% | 25 | 0.844 | 1.000 | 0.916 | 1.000 | 0.971 | 1.000 | 0.990 | 1.000 |
|  | 35 | 0.855 | 1.000 | 0.930 | 1.000 | 0.977 | 1.000 | 0.990 | 1.000 |
|  | 50 | 0.880 | 1.000 | 0.953 | 1.000 | 0.990 | 1.000 | 0.998 | 1.000 |

Table 4 Power comparison for sample size $n=150$ and $k=\{25,50,75\}$

| Censoring proportion | $k$ | $\operatorname{LFRD}(\lambda, \beta)$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | (1.25, 1.25) |  | (1.5, 2.5) |  | (1.75, 2.75) |  | $(2,3)$ |  |
|  |  | Unif | Exp | Unif | Exp | Unif | Exp | Unif | Exp |
| 10\% | 25 | 0.860 | 1.000 | 0.897 | 1.000 | 0.908 | 1.000 | 0.921 | 1.000 |
|  | 50 | 0.872 | 1.000 | 0.916 | 1.000 | 0.941 | 1.000 | 0.958 | 1.000 |
|  | 75 | 0.881 | 1.000 | 0.942 | 1.000 | 0.964 | 1.000 | 0.972 | 1.000 |
| 20\% | 25 | 0.874 | 1.000 | 0.901 | 1.000 | 0.943 | 1.000 | 0.970 | 1.000 |
|  | 50 | 0.882 | 1.000 | 0.946 | 1.000 | 0.982 | 1.000 | 0.994 | 1.000 |
|  | 75 | 0.893 | 1.000 | 0.957 | 1.000 | 0.988 | 1.000 | 0.999 | 1.000 |
| 30\% | 25 | 0.906 | 1.000 | 0.953 | 1.000 | 0.977 | 1.000 | 0.995 | 1.000 |
|  | 50 | 0.919 | 1.000 | 0.976 | 1.000 | 0.999 | 1.000 | 1.000 | 1.000 |
|  | 75 | 0.938 | 1.000 | 0.991 | 1.000 | 0.999 | 1.000 | 1.000 | 1.000 |

patients. We considered the censoring proportions 8 and 6\%, respectively. Two groups are shown in Fig. 4.

We apply the proposed approach along with the binary segmentation procedure (see, [30]) to detect multiple change points. We found that Group 1 and Group 2 have a change point at 54th and 15th positions, respectively. Moreover, the $95 \%$ confidence sets for the estimated change location for Group 1 is $\{41,42,46,47,48,49,50,51,52,53,54,55,56\}$, and for Group 2 is $\{13,14,15\}$. The corresponding change point location and the $95 \%$ confidence sets are graphed in Figs. 5 and 6, respectively.

### 4.2 Acute Myocardial Infarction Data

The second data set is about acute myocardial infarction. For the purpose of this analysis, we consider a subset of data from a study carried out at the University

Table 5 Coverage probability and average size of confidence sets for $n=50$ and $k=\{15,20,25\}$

| Censoring proportion | $k$ | $\alpha$ | $\operatorname{LFRD}(\lambda, \beta)$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | (1.25, 1.25) |  | $(1.5,2.5)$ |  | (1.75, 2.75) |  | $(2,3)$ |  |
|  |  |  | CP | Size | CP | Size | CP | Size | CP | Size |
| 10\% | 15 | 0.50 | 0.39 | 17.30 | 0.54 | 17.08 | 0.56 | 16.24 | 0.61 | 15.91 |
|  |  | 0.90 | 0.82 | 35.57 | 0.87 | 33.65 | 0.89 | 32.00 | 0.90 | 30.32 |
|  |  | 0.95 | 0.89 | 39.05 | 0.92 | 37.31 | 0.93 | 35.90 | 0.94 | 34.48 |
|  |  | 0.99 | 0.94 | 41.43 | 0.96 | 40.95 | 0.96 | 40.35 | 0.97 | 39.72 |
|  | 20 | 0.50 | 0.40 | 17.56 | 0.55 | 17.14 | 0.58 | 16.55 | 0.62 | 15.71 |
|  |  | 0.90 | 0.83 | 35.72 | 0.88 | 33.72 | 0.90 | 32.13 | 0.91 | 29.95 |
|  |  | 0.95 | 0.90 | 39.06 | 0.93 | 37.39 | 0.95 | 36.02 | 0.95 | 34.05 |
|  |  | 0.99 | 0.94 | 41.47 | 0.96 | 41.31 | 0.97 | 40.85 | 0.98 | 39.78 |
|  | 25 | 0.50 | 0.41 | 17.59 | 0.56 | 17.04 | 0.59 | 16.68 | 0.63 | 15.72 |
|  |  | 0.90 | 0.84 | 35.64 | 0.89 | 33.86 | 0.91 | 32.09 | 0.92 | 29.91 |
|  |  | 0.95 | 0.91 | 39.04 | 0.94 | 37.52 | 0.95 | 36.04 | 0.95 | 34.16 |
|  |  | 0.99 | 0.94 | 41.53 | 0.96 | 40.40 | 0.97 | 39.89 | 0.98 | 38.99 |
| 20\% | 15 | 0.50 | 0.37 | 16.58 | 0.49 | 16.39 | 0.55 | 15.79 | 0.59 | 15.01 |
|  |  | $0.90$ | 0.81 | 35.05 | 0.86 | 34.03 | 0.87 | 32.63 | 0.88 | 31.12 |
|  |  | 0.95 | 0.88 | 38.28 | 0.92 | 37.55 | 0.92 | 36.19 | 0.92 | 35.02 |
|  |  | 0.99 | 0.93 | 40.81 | 0.95 | 40.02 | 0.95 | 39.80 | 0.96 | 39.42 |
|  | 20 | 0.50 | 0.38 | 16.53 | 0.50 | 16.27 | 0.56 | 15.93 | 0.60 | 15.32 |
|  |  | 0.90 | 0.82 | 35.07 | 0.86 | 33.73 | 0.88 | 32.51 | 0.89 | 30.59 |
|  |  | 0.95 | 0.89 | 38.30 | 0.92 | 37.59 | 0.93 | 36.36 | 0.94 | 34.57 |
|  |  | 0.99 | 0.94 | 40.83 | 0.96 | 40.21 | 0.96 | 39.75 | 0.97 | 38.87 |
|  | 25 | 0.50 | 0.39 | 16.72 | 0.51 | 16.39 | 0.57 | 15.93 | 0.60 | 15.23 |
|  |  | 0.90 | 0.82 | 35.16 | 0.87 | 33.83 | 0.89 | 32.73 | 0.91 | 31.32 |
|  |  | 0.95 | 0.88 | 38.41 | 0.92 | 37.58 | 0.94 | 36.58 | 0.95 | 35.34 |
|  |  | 0.99 | 0.93 | 40.96 | 0.96 | 39.21 | 0.97 | 39.03 | 0.97 | 38.52 |
| 30\% | 15 | 0.50 | 0.37 | 16.72 | 0.48 | 16.30 | 0.51 | 15.73 | 0.56 | 15.21 |
|  |  | 0.90 | 0.81 | 35.05 | 0.85 | 33.94 | 0.86 | 16.73 | 0.87 | 31.83 |
|  |  | 0.95 | 0.88 | 38.18 | 0.90 | 37.41 | 0.91 | 36.61 | 0.92 | 35.63 |
|  |  | 0.99 | 0.93 | 40.18 | 0.94 | 39.83 | 0.95 | 39.54 | 0.95 | 39.16 |
|  | 20 | 0.50 | 0.38 | 16.80 | 0.49 | 16.44 | 0.53 | 15.79 | 0.57 | 15.09 |
|  |  | 0.90 | 0.82 | 35.02 | 0.85 | 33.87 | 0.87 | 32.85 | 0.88 | 31.09 |
|  |  | 0.95 | 0.88 | 38.24 | 0.90 | 33.87 | 0.91 | 36.60 | 0.92 | 35.19 |
|  |  | 0.99 | 0.93 | 40.85 | 0.94 | 40.24 | 0.95 | 39.74 | 0.96 | 39.29 |
|  | 25 | 0.50 | 0.40 | 16.71 | 0.50 | 16.31 | 0.55 | 15.60 | 0.58 | 15.00 |
|  |  | 0.90 | 0.83 | 35.06 | 0.85 | 33.82 | 0.87 | 33.07 | 0.90 | 32.16 |
|  |  | 0.95 | 0.89 | 38.25 | 0.91 | 37.53 | 0.93 | 36.86 | 0.94 | 36.03 |
|  |  | 0.99 | 0.94 | 40.85 | 0.95 | 40.37 | 0.96 | 39.97 | 0.97 | 39.33 |

Table 6 Coverage probability and average size of confidence sets for $n=100$ and $k=\{25,35,50\}$

| Censoring proportion | $k$ | $\alpha$ | $\operatorname{LFRD}(\lambda, \beta)$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | (1.25, 1.25) |  | (1.5, 2.5) |  | (1.75, 2.75) |  | $(2,3)$ |  |
|  |  |  | CP | Size | CP | Size | CP | Size | CP | Size |
| 10\% | 25 | 0.50 | 0.33 | 26.34 | 0.56 | 24.48 | 0.60 | 21.19 | 0.64 | 19.29 |
|  |  | 0.90 | 0.77 | 67.93 | 0.87 | 56.69 | 0.89 | 48.38 | 0.91 | 41.68 |
|  |  | 0.95 | 0.85 | 77.46 | 0.92 | 67.23 | 0.93 | 58.98 | 0.95 | 51.29 |
|  |  | 0.99 | 0.94 | 87.78 | 0.96 | 81.61 | 0.97 | 75.40 | 0.98 | 68.90 |
|  | 35 | 0.50 | 0.34 | 26.28 | 0.57 | 22.48 | 0.62 | 19.62 | 0.65 | 17.27 |
|  |  | 0.90 | 0.78 | 67.78 | 0.88 | 53.35 | 0.90 | 44.74 | 0.92 | 37.76 |
|  |  | 0.95 | 0.87 | 77.62 | 0.93 | 64.72 | 0.94 | 55.24 | 0.95 | 46.72 |
|  |  | 0.99 | 0.95 | 88.13 | 0.97 | 80.88 | 0.98 | 73.48 | 0.98 | 64.82 |
|  | 50 | 0.50 | 0.36 | 25.81 | 0.58 | 23.59 | 0.63 | 19.95 | 0.66 | 17.36 |
|  |  | 0.90 | 0.80 | 67.88 | 0.89 | 53.29 | 0.91 | 44.84 | 0.92 | 37.40 |
|  |  | 0.95 | 0.89 | 78.11 | 0.93 | 63.92 | 0.95 | 55.21 | 0.96 | 46.53 |
|  |  | 0.99 | 0.96 | 88.44 | 0.97 | 80.24 | 0.98 | 72.70 | 0.99 | 64.44 |
| 20\% | 25 | 0.50 | 0.30 | 26.56 | 0.51 | 25.65 | 0.58 | 22.43 | 0.61 | 21.07 |
|  |  | 0.90 | 0.78 | 68.95 | 0.85 | 59.34 | 0.88 | 52.19 | 0.91 | 46.00 |
|  |  | 0.95 | 0.87 | 79.11 | 0.91 | 69.87 | 0.93 | 62.61 | 0.94 | 56.34 |
|  |  | 0.99 | 0.94 | 88.56 | 0.95 | 82.59 | 0.96 | 78.02 | 0.98 | 73.31 |
|  | 35 | 0.50 | 0.33 | 27.24 | 0.52 | 24.01 | 0.59 | 21.42 | 0.62 | 18.86 |
|  |  | 0.90 | 0.79 | 68.65 | 0.86 | 57.16 | 0.89 | 48.91 | 0.89 | 41.33 |
|  |  | 0.95 | 0.88 | 78.85 | 0.93 | 68.04 | 0.94 | 59.55 | 0.94 | 50.79 |
|  |  | 0.99 | 0.95 | 88.75 | 0.97 | 82.34 | 0.97 | 76.63 | 0.98 | 69.76 |
|  | 50 | 0.50 | 0.33 | 26.15 | 0.54 | 24.59 | 0.61 | 22.63 | 0.64 | 18.71 |
|  |  | 0.90 | 0.80 | 68.33 | 0.87 | 56.84 | 0.90 | 49.85 | 0.91 | 41.51 |
|  |  | 0.95 | 0.89 | 78.95 | 0.92 | 67.64 | 0.93 | 60.13 | 0.95 | 51.14 |
|  |  | 0.99 | 0.95 | 88.96 | 0.97 | 82.78 | 0.98 | 77.09 | 0.98 | 69.62 |
| 30\% | 25 | 0.50 | 0.30 | 25.43 | 0.49 | 26.62 | 0.55 | 24.36 | 0.60 | 23.07 |
|  |  | 0.90 | 0.77 | 68.80 | 0.85 | 62.54 | 0.87 | 56.39 | 0.90 | 50.77 |
|  |  | 0.95 | 0.85 | 78.61 | 0.91 | 72.52 | 0.93 | 67.22 | 0.94 | 60.83 |
|  |  | 0.99 | 0.93 | 87.53 | 0.95 | 84.44 | 0.97 | 81.47 | 0.97 | 77.00 |
|  | 35 | 0.50 | 0.31 | 26.20 | 0.50 | 25.32 | 0.56 | 23.34 | 0.61 | 20.84 |
|  |  | 0.90 | 0.78 | 68.67 | 0.85 | 60.16 | 0.88 | 23.34 | 0.89 | 46.10 |
|  |  | 0.95 | 0.86 | 78.84 | 0.92 | 70.83 | 0.94 | 64.10 | 0.95 | 56.43 |
|  |  | 0.99 | 0.94 | 87.82 | 0.96 | 84.13 | 0.97 | 79.68 | 0.98 | 74.27 |
|  | 50 | 0.50 | 0.33 | 26.03 | 0.51 | 25.26 | 0.57 | 22.55 | 0.63 | 20.42 |
|  |  | 0.90 | 0.80 | 68.12 | 0.86 | 59.37 | 0.88 | 52.59 | 0.91 | 45.58 |
|  |  | 0.95 | 0.87 | 78.27 | 0.92 | 70.30 | 0.93 | 63.51 | 0.95 | 56.08 |
|  |  | 0.99 | 0.94 | 87.56 | 0.96 | 83.90 | 0.97 | 79.63 | 0.98 | 74.33 |

Table 7 Coverage probability and average size of confidence sets for $n=150$ and $k=\{25,50,75\}$

| Censoring proportion | $k$ | $\alpha$ | $\underline{\operatorname{LFRD}}(\lambda, \beta)$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | (1.25, 1.25) |  | (1.5, 2.5) |  | (1.75, 2.75) |  | $(2,3)$ |  |
|  |  |  | CP | Size | CP | Size | CP | Size | CP | Size |
| 10\% | 25 | 0.50 | 0.26 | 32.13 | 0.52 | 28.37 | 0.60 | 25.36 | 0.63 | 21.79 |
|  |  | 0.90 | 0.73 | 97.38 | 0.86 | 74.66 | 0.89 | 62.71 | 0.90 | 50.41 |
|  |  | 0.95 | 0.83 | 114.21 | 0.91 | 91.29 | 0.94 | 77.74 | 0.95 | 63.56 |
|  |  | 0.99 | 0.93 | 132.42 | 0.96 | 116.85 | 0.98 | 105.24 | 0.98 | 90.91 |
|  | 50 | 0.50 | 0.27 | 37.16 | 0.54 | 25.62 | 0.63 | 22.06 | 0.67 | 18.25 |
|  |  | 0.90 | 0.74 | 122.76 | 0.87 | 63.47 | 0.90 | 49.68 | 0.92 | 38.67 |
|  |  | 0.95 | 0.85 | 150.45 | 0.93 | 79.05 | 0.95 | 62.06 | 0.95 | 48.80 |
|  |  | 0.99 | 0.95 | 179.30 | 0.98 | 107.50 | 0.98 | 88.66 | 0.99 | 71.85 |
|  | 75 | 0.50 | 0.28 | 32.16 | 0.57 | 25.39 | 0.64 | 20.72 | 0.68 | 17.77 |
|  |  | 0.90 | 0.75 | 94.35 | 0.88 | 60.76 | 0.90 | 46.40 | 0.91 | 36.33 |
|  |  | 0.95 | 0.86 | 111.96 | 0.93 | 76.63 | 0.95 | 58.90 | 0.95 | 45.88 |
|  |  | 0.99 | 0.96 | 131.83 | 0.98 | 105.99 | 0.99 | 86.39 | 0.99 | 68.70 |
| 20\% | 25 | 0.50 | 0.25 | 32.25 | 0.47 | 28.57 | 0.56 | 25.81 | 0.60 | 23.58 |
|  |  | 0.90 | 0.72 | 97.19 | 0.84 | 79.24 | 0.87 | 67.38 | 0.90 | 56.82 |
|  |  | 0.95 | 0.83 | 114.68 | 0.90 | 96.72 | 0.93 | 84.50 | 0.95 | 72.47 |
|  |  | 0.99 | 0.92 | 132.13 | 0.95 | 121.20 | 0.97 | 111.65 | 0.97 | 100.34 |

Table 7 continued

| Censoring proportion | $k$ | $\alpha$ | $\operatorname{LFRD}(\lambda, \beta)$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | (1.25, 1.25) |  | (1.5, 2.5) |  | (1.75, 2.75) |  | $(2,3)$ |  |
|  |  |  | CP | Size | CP | Size | CP | Size | CP | Size |
| 30\% | 50 | 0.50 | 0.26 | 37.33 | 0.53 | 28.41 | 0.60 | 23.67 | 0.63 | 19.77 |
|  |  | 0.90 | 0.74 | 124.25 | 0.86 | 70.23 | 0.89 | 55.38 | 0.91 | 43.70 |
|  |  | 0.95 | 0.84 | 151.12 | 0.92 | 86.77 | 0.94 | 69.79 | 0.95 | 55.53 |
|  |  | 0.99 | 0.95 | 180.05 | 0.97 | 114.36 | 0.98 | 98.04 | 0.98 | 81.35 |
|  | 75 | 0.50 | 0.28 | 33.79 | 0.57 | 28.10 | 0.61 | 23.11 | 0.65 | 19.77 |
|  |  | 0.90 | 0.75 | 96.18 | 0.87 | 68.78 | 0.89 | 53.40 | 0.92 | 42.18 |
|  |  | 0.95 | 0.85 | 113.36 | 0.93 | 85.31 | 0.94 | 67.47 | 0.96 | 53.594 |
|  |  | 0.99 | 0.96 | 132.58 | 0.97 | 113.42 | 0.98 | 95.75 | 0.99 | 79.66 |
|  | 25 | 0.50 | 0.24 | 32.76 | 0.47 | 30.71 | 0.52 | 28.02 | 0.58 | 25.24 |
|  |  | 0.90 | 0.72 | 98.02 | 0.81 | 83.83 | 0.85 | 73.13 | 0.89 | 62.17 |
|  |  | 0.95 | 0.83 | 115.72 | 0.88 | 100.50 | 0.91 | 90.32 | 0.93 | 78.17 |
|  |  | 0.99 | 0.93 | 132.73 | 0.95 | 123.86 | 0.96 | 115.86 | 0.97 | 106.38 |
|  | 50 | 0.50 | 0.25 | 37.94 | 0.49 | 30.59 | 0.56 | 25.40 | 0.60 | 21.34 |
|  |  | 0.90 | 0.73 | 124.51 | 0.85 | 76.70 | 0.87 | 61.82 | 0.89 | 49.51 |
|  |  | 0.95 | 0.84 | 151.34 | 0.90 | 93.40 | 0.92 | 76.86 | 0.94 | 63.04 |
|  |  | 0.99 | 0.94 | 180.20 | 0.96 | 120.20 | 0.97 | 105.72 | 0.98 | 90.80 |
|  | 75 | 0.50 | 0.26 | 33.59 | 0.50 | 29.99 | 0.59 | 25.80 | 0.61 | 21.70 |
|  |  | 0.90 | 0.75 | 97.45 | 0.85 | 74.48 | 0.88 | 60.55 | 0.90 | 49.11 |
|  |  | 0.95 | 0.86 | 114.86 | 0.91 | 91.50 | 0.93 | 75.76 | 0.95 | 61.94 |
|  |  | 0.99 | 0.95 | 133.31 | 0.97 | 118.68 | 0.97 | 104.43 | 0.98 | 89.79 |

Clinical Center in Ljubljana. The data were originally studied by [15]. The data set provides details of 972 patients between the ages of 40 and 80 , of which $48 \%$ have censored outcomes. This data set was studied in the literature, for example, see [31] and [29]. Our proposed approach is used to identify structural changes in the data set. The binary segmentation method by [30] is used to identify potential multiple changes. The change point estimates are $\hat{k}=\{78,184,532,842,881,962\}$. The $95 \%$ confidence sets of the change point estimates are indicated by the horizontal red dashed line in Fig. 7.

In comparison with [31], we obtain the following equation:

$$
\begin{aligned}
\hat{y}_{i}= & \left(11.700-0.049 \mathrm{age}_{i}-0.343 \operatorname{gender}_{i}\right) I_{(1 \leq i \leq 78)} \\
& +\left(11.129-0.042 \text { age }_{i}-0.461 \operatorname{gender}_{i}\right) I_{(79 \leq i \leq 184)}
\end{aligned}
$$



Fig. 4 Failure times


Fig. 5 Failure times data with change-point estimate


Fig. $695 \%$ confidence set of change point location


Fig. 7 a Confidence curve for change point estimate $\hat{k}=184$, b Confidence curve for the subset $(2 \leq i \leq$ 183), the change point estimate $\hat{k}=78$, c Confidence curve for the subset ( $185 \leq i \leq 972$ ), the change point estimate $\hat{k}=842$, d Confidence curve for the subset $(185 \leq i \leq 841)$, the change point estimate $\hat{k}=532$, e Confidence curve for the subset ( $843 \leq i \leq 972$ ), the change point estimate $\hat{k}=881$, and $\mathbf{f}$ Confidence curve for the subset ( $882 \leq i \leq 972$ ), the change point estimate $\hat{k}=962$

$$
\begin{aligned}
& +\left(11.697-0.062 \text { age }_{i}+0.054 \text { gender }_{i}\right) I_{(185 \leq i \leq 532)} \\
& +\left(10.241-0.029 \text { age }_{i}-0.120 \text { gender }_{i}\right) I_{(533 \leq i \leq 842)} \\
& +\left(10.738-0.045 \text { age }_{i}-0.099 \text { gender }_{i}\right) I_{(843 \leq i \leq 881)} \\
& +\left(10.433-0.042 \text { age }_{i} 0.215 \text { gender }_{i}\right) I_{(882 \leq i \leq 962)} \\
& +\left(6.473+0.010 \text { age }_{i}+0.517 \text { gender }_{i}\right) I_{(963 \leq i \leq 972)}
\end{aligned}
$$

However, [31]'s method considers randomly censored linear models without any change point.

## 5 Conclusion

In this paper, we propose a change point detection procedure in Linear Failure Rate distribution using the likelihood ratio test method in combining with the confidence distribution to construct the confidence sets of change locations, instead of providing point estimates only. Moreover, we consider the scenario of random censorship. Our proposed framework can be generalized to any combination of covariate distributions. We establish the asymptotic properties of the test statistic. Simulations are carried out under various conditions with different censoring distributions to demonstrate the advantages of the proposed method. Two real data applications are provided to illustrate the advantage of the proposed method.

## References

1. Bain LJ (1974) Analysis for the linear failure-rate life-testing distribution. Technometrics 16(4):551559
2. Balakrishnan N, Malik HJ (1986) Order statistics from the linear-exponential distribution, part I: increasing hazard rate case. Commun Stat Theory Methods 15:179-203
3. Chen J, Gupta AK (1997) Testing and locating variance change points with application to stock prices. J Am Stat Assoc 92:739-747
4. Chen J, Gupta AK (2012) Parametric statistical change point analysis with applications to genetics, medicine, and finance, 2nd edn. Birkhäuser, Boston
5. Cosörgö M, Horváth L (1997) Limit theorems in change-point analysis. Wiley, New York
6. Cunen C, Hermansen G, Hjort NL (2018) Confidence distributions for change-points and regime shifts. J Stat Plan Inference 195:14-34
7. Hawkins DM (1977) Testing a sequence of observations for a shift in location. J Am Stat Assoc 72:357180-186
8. Kalbfleisch D, Prentice RL (1980) The statistical analysis of failure time data. Wiley, New York
9. Lin CT, Wu SJS, Balakrishnan N (2006) Monte Carlo methods for Bayesian inference on the linear Hazard rate distribution. Commun Stat Theory Methods 35:575-590
10. Ning W (2012) Empirical likelihood ratio test for a mean change point model with a linear trend followed by an abrupt change. J Appl Stat 39(5):947-961
11. Ning W, Gupta AK (2009) Change point analysis for generalized lambda distributions. Commun Stat Simul Comput 38:1789-1802
12. Ning W, Pailden J, Gupta AK (2012) Empirical likelihood ratio test for the epidemic change model. J Data Sci 10(1):107-127
13. Page ES (1954) Continue inspection schemes. Biometrika 41:100-135
14. Page ES (1955) A test for a chance in a parameter occurring at an unknown point. Biometrika 42:523527
15. Pohar M, Stare J (2006) Relative survival analysis in R. Comput Methods Programs Biomed 81:272278
16. Ratnasingam S, Ning W (2020) Confidence distributions for skew normal change-point model based on modified information criterion. J Stat Theory Pract 14(3):1-21
17. Ratnasingam S, Ning W (2020) Statistical inference for the lomax-linear failure rate distribution. Far East J Theor Stat 59(1):35-58
18. Ratnasingam S, Ning W (2021) Modified information criterion for regular change point models based on confidence distribution. Environ Ecol Stat 28(2):303-322
19. Sarhan AM, Kundu D (2009) Generalized linear failure rate distribution. Commun Stat Theory Methods 38:642-660
20. Schweder T, Hjort N (2002) Confidence and likelihood. Scand J Stat 29(2):309-332
21. Schweder T, Hjort N (2016) Confidence, likelihood, probability. Cambridge University Press, Cambridge
22. Sen A, Bhattacharyya GK (1995) Inference procedures for the linear failure rate model. J Stat Plan Inference 46:59-76
23. Sen AK, Srivastava MS (1975) On tests for detecting change in mean. Ann Stat 3:98-108
24. Sen AK, Srivastava MS (1975) Some one-sided tests on change in level. Technometrics 17:61-64
25. Shen J, Liu R, Xie M (2018) Prediction with confidence-a general framework for predictive inference. J Stat Plan Inference 195:126-140
26. Singh K, Xie M (2012) CD posterior-combining prior and data through confidence distributions. In: Contemporary developments in Bayesian Analysis and statistical decision theory: a Festchrift in Honor of Williams E. Strawderman (D. Fourdrinier et al. eds.). IMS Collection, vol 8, pp 200-214. IMS, Beachwood, OH
27. Singh K, Xie M, Strawderman WE (2005) Combining information from independent sources through confidence distributions. Ann Stat 33(1):159-183
28. Singh K, Xie M, Strawderman WE (2007) Confidence distribution (CD): distribution estimator of a parameter. In: Complex datasets and inverse problems: tomography, networks and beyond. Lecture notes-monograph series, vol 54, pp 132-150
29. Tang LJ, Zhou ZG, Wu CC (2012) Weighted composite quantile estimation and variable selection method for censored regression model. Stat Prob Lett 82:653-663
30. Vostrikova LJ (1981) Detecting "disorder" in multidimensional random processes. Soviet Math Doklady 24:55-59
31. Wang H, Wang L (2009) Locally weighted censored quantile regression. J Am Stat Assoc 104:11171128
32. Worsley K (1979) On the likelihood ratio test for a shift in location of normal populations. J Am Stat Assoc 74:365-367
33. Xie M, Singh K (2013) Confidence distribution, the frequentist distribution estimator of a parameter: a review. Int Stat Rev 81(1):2-39
34. Zou C, Liu Y, Qin P, Wang Z (2007) Empirical likelihood ratio test for the change-point problem. Statist Probab Lett 77:374-382

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.


[^0]:    Wei Ning
    wning@bgsu.edu
    1 Department of Mathematics, California State University, San Bernardino, CA 92407, USA
    2 Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403, USA
    3 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China

