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Abstract

In this paper, we develop a procedure for change point detection problem in the linear
failure rate (LFR) distribution for random censored data. The asymptotic results of
the associated test statistic have been established. Moreover, we construct the confi-
dence sets for change locations based on the confidence distribution (CD). Simulations
have been conducted to investigate the performance of the proposed procedure under
different random censoring distributions. Two real data applications are provided to
illustrate the detection procedure.

Keywords Change point - Linear failure rate - Confidence sets - Confidence
distribution

1 Introduction

Change point analysis plays an important role in statistical analysis. The change point
problem was initially introduced by [13, 14] to identify a single structural change in
a parameter. Since then, it has been extensively studied in the literature. For example,
[23, 24] studied the Bayesian approach to detect changes in the mean of a normal
distribution. Chen and Gupta [4] and Coso6rgé and Horvéth [5] and established asymp-
totic properties on various parametric change point models. The likelihood ratio test
for the known and unknown variance for testing the mean change was discussed by
[7]. The asymptotic null distribution of a single change point detection for known and
unknown variance was investigated by [32]. The multiple change point problem was
first considered by [30] who proposed a binary segmentation (BS) procedure, which
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applies recursively to all subsequent partitions until no further significant change is
detected. Chen and Gupta [3] studied the variance change point problem for univariate
Gaussian model using the information criterion approach. The change point problem
for generalized lambda distribution was studied by [11]. Ning et al. [10, 12] proposed
nonparametric methods to detect the different types of changes in the mean. Rat-
nasingam and Ning [16] studied a confidence distribution based detection procedure
for a skew normal change-point model incorporating modified information criterion.
Recently, [18] proposed a method based on the modified information criterion and
the confidence distribution for detecting and estimating changes in a three-parameter
Weibull distribution.

Exponential, Rayleigh, linear failure rate, or generalized exponential distributions
are often used in life-testing and reliability studies. The linear failure rate (LFR)
distribution can be easily generalized to many well-known distributions such as the
exponential distribution and the Rayleigh distribution. Bain [1] studied the statistical
properties of the parameters of LFR distribution in the context of type II censorship.
The probability density function of the LFR distribution is

Fx) = (b4 2Bx)e” *H2BD 1 20050, 850, )

where A and B are the shape and scale parameters, respectively. The cumulative dis-
tribution function (CDF) of the LFR distribution is

F(x) =1— e Cxth), )
The LFR hazard function is

hy = I

=T=Fe = (A +2Bx), 3

where x > 0,1 > 0,8 > 0. The LFR distribution is very useful in life testing
and reliability studies for modeling the life length of a system or component when
failures occur randomly and also from aging or wear-out. The following are some
useful properties of the LFR distribution.

a. If x =0and B # 0, then the LFR distribution is reduced to the Rayleigh distribu-
tion with parameter .

b. If = 0 and & # O, then the LFR distribution is reduced to the exponential
distribution with parameter A.

The LFR distribution with its properties and applications has been studied extensively
in the literature. For example, the recurrence relations for the moment of the order
statistics from the LFR distribution were established by [2]. In the life-testing and
reliability studies, [22] studied various LFR distribution properties and applications.
The Monte Carlo methods for Bayesian inference on the linear hazard distribution were
developed by [9]. Sarhan and Kundu [19] considered the generalized linear failure
rate distribution and discussed its properties and the maximum likelihood estimations
(MLES). Recently, [ 17] studied the statistical properties of a new four-parameter called
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as Lomax-linear failure rate distribution. To the best of our knowledge, a few works
focus on the change point problem of the LFR distribution. In this paper, we propose
a detection procedure regarding the LFR distribution based on the likelihood ratio test
(LRT) under random censorship.

This paper is organized as follows. In Sect. 2, we develop a change point detection
procedure for the LFR distribution and the procedure to construct the confidence set
of a change with a given nominal level through the confidence distribution (CD).
Simulations to investigate the performance of the proposed procedures in terms of
powers, coverage probabilities, and lengths of confidence sets are conducted in Sect. 3.
Two real data applications are given in Sect. 4 to illustrate the proposed procedures.
Some discussion is provided in Sect. 5.

2 Main Results
2.1 Likelihood Ratio Test for LFR Distribution

Let X1, X», ..., X,, be a sequence of independent observations belonging to a LFR
distribution. The change point problem for a LFR distribution is defined as follows.

LFR(A : i =1....
X; ~ (AL, BL); l sk @
LFR(Ag,Br); i=(k+1),...,n,

where the PDF and CDF of LFR distribution are given in (1) and (15), respectively.
We are testing the following hypotheses.

Hoklzkzzzknzk’ ﬁlzﬁzz---:ﬂnzﬁ’

versus

Hiiji= =g f b = =i Pr=-- =P # Py = =h,

AL AR BL Br

where (A, B), (AL, Br) and (Ar, Bg) are unknown parameters and need to be estimated.
Further, k is the unknown change location and needs to be estimated as well. Let
1 < r < n be anatural number and is the number of observations presented if the data
sample is censored. Suppose X1, ..., X, denotes the » smallest observations from a
sample of size n from the LFR model. Following [22], the likelihood function of the
LFR distribution is,

! r
L= [0+ 28X exp 001 + U2 s)
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where
r r
Ur=Y Xo+0—nXe and Up=) Xg+ 0 —r)XG,. (6)
i=1 i=1
Under the null hypothesis, the log-likelihood function is given as,
! r

- ) + Z {log (A + 28X 1) — WU + BUD}. (T)

(n—r)! P

Iy = log(Lo) = log <

The first derivatives of the log likelihood function are given as below.

r r

Mpy _ 3 .
0 & G+ 2px)

al Hy 2)6,'
, and = —U,.
1 op ; G +2Bx)
We note that the likelihood function in (5) is defined for censored data if r <
n.If n = r, the complete sample is considered. Then, for a complete sample, U; and
U, can be simplified as follows.

n n

2

U1=ZX(,') and UQZZX(i),
i=I

i=1
According to [1], we have
AU+ UL = (®)

where U; and U, are defined in (6), and X and ﬁ are MLEs of A and . We can solve
Eq. (8) for % and consider A as a function of ,3, then we may substitute A= i(fi)
into the likelihood function while treating the other occurrence of § as ,é . Bain [1]
proposed this idea to achieve a reduction of the MLE problem to a single-variable
iterative procedure which reduces the two-variable iteration to that in a single variable
say ,3 through the so-called pseudo-likelihood function. Using the relation (8) and the
likelihood function (5) we construct the pseudo-likelihood,

n! i~ ((r—BU>
L= Py ]1 {<—U1 ) + 2/3X(i)} exp (—r). ©)

Then, the pseudo log-likelihood function of the LFR distribution is

Iy B) =Y (n—r+i)+ > log {(%) + 2ﬂx(,~)} —r.  (10)
i=1 i=1
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Now the maximum likelihood estimate (MLE) of B is obtained by

G B) D _pU; |
8 op Zl {( )”ﬁx(’)”

_r' U, ar+12X.U_U:|
B _<r—ﬁUz+2ﬁX(i)U1>'£<a a(ﬂ OU1—p 2))

—

Il
.M‘

i U
( ‘ ).— - (2X@ Ui — Uz)}
L\r = BU2+28X,HU1) Up

[ 2U0:X@ —U
=3 172G — =2 } (11)
—Lr— BU>» + 28X ;) U
Similar to [1, 22], we let 2(B) as
d 201Xy — Un
h(B) = |: ] . (12)
p Z r—pBU, +2B8X iUy

i=1
Taking the first derivative of / gives

afggs) _y {_ (( 201X — Ua )2> (—U2+ 2U1X(,~)):|

im1 r—BU» +2BX i) Ur

r 2
201 Xy — U
__y | e 2) <0, (13)

2
= | (r = BU + 28X U1)

Therefore, the unique value of g8 such that #(8) = 0 for ,3 € (O, ULz) The MLE of A
is

~ r—pU
G =Pl (14)
Ui

Remark The “pseudo-likelihood” method proposed by [1] simplifies the estimation
procedure; however, this method is easy to produce misleading results as pointed out
by [22]. To tackle this issue, [1] suggested the range of searching B be restricted
within (0, 7 /U>). Sen and Bhattacharyya [22] also verified that the solution found in
this restricted range is indeed the solution of the original likelihood function, that is,
maximizes the original likelihood function. This restricted range is satisfied due to
Eq. (8).

Suppose X1, ..., Xi be a sequence of independent random variables with the den-
sity function f(x, ®p) and Xg41, ..., X, coming from the population with the density
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function f(x, ®g). Now the log-likelihood function is defined as

k n
€k, ©r, Og) =Y log (f(xi, ®0)) + Y log (f(xi, Or)), (15)

i=1 i=k+1

where ®7 and ®g are the parameter space of the pre-change and post-change distribu-
tions, respectively. Thus, under the alternative hypothesis, the log-likelihood function
is,

k
Iy, =log(L1) =l (k, AL, Br. Ag. Br) = Y _10g(f (xi. AL. L))

i=1

+ Y log(f (xi, s BR))- (16)

i=k+1

The MLEs of Ay, SL, AR, and Br can be estimated by solving the following equa-
tions.

oy, dlp, aly, aly,

=0, =0, =0, and =0.
AL 981 AR 9BR
The log-likelihood ratio can be defined as,
Lo
A =—2log (7*) = —2[10gL0 . long}. (17)
1

The log-likelihood ratio test statistic Z, can be obtained as Z, = maxj<x<, Ak-
We have sufficient evidence to reject the null hypothesis for a large value of the log-
likelihood ratio test statistic Z,, if there exists a change. If the change point location
is in the beginning or the end of the data set, we may not have enough observations
to estimate the MLEs of the parameters. Thus, we consider the trimmed version of
the test statistic. Reprising [34], the trimmed version of the test statistic is defined as
follows.

Z, = max Ayg, (18)
l<k<n—¢t

where ¢ = 2[log(n)]. We can estimate the change point by k such that

k= max A (19)
l<k<n—{

This procedure can easily be replicated if a second change point is suspected.

Theorem 2.1 Under the null hypothesis, as n —> oo, for all t € R, we have

n—-o0

~ 1 t
lim (a log u(n) an —blogu(n) < t) =e ¢, (20)
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where

a(logu(n)) = (2loglogu(n))'/?

3 3
b(logu(n)) = 2loglogu(n) + 5 logloglogu(n) —logI’ (5) ,

n? —2nlog(n) + (2 log(n))2

u(n) = (2 logn)?

Proof Following [5] Theorem 1.3.1,
l—a=P(Z, <C¥|Ho)
~ 1 o
=P (0<Zi7<C; | Ho
~ 1
=P (—b logu(n) < alog(u(n))Z,,E —blogu(n)
< alogu()(CH'? — blogu(n) |H0)
~ 1
=P (a 1ogu(n)z,,E — blogu(n) < alogu(n)(C*)'? — blogu(n) |H0)
~ 1
— P <a logu(n)an —blogu(n) < —blogu(n) |H0>
~ exp{ — exp {blogu(n) — alogu(n)(Cf,‘)l/z}} — exp{ — exp {blogu(n)}}.

Therefore,

CY ~

n

log ( — log(l —o +exp{ — exp {blogu(n)}})) — blogu(n) ? 21
—alogu(n) - @D

O

The theoretical critical values for the change point problem can be approximated
through Eq. (21). However, the theoretical critical values are unreliable when the
sample size is considerably small. Thus, we compute the asymptotic critical values
for the testing problem via simulations as follows. First, we generate data with vari-
ous sample sizes X1, X2, ..., X, from LFRD(1, 1). The censoring time observations
Y1, Y, ..., Y, are from Uniform(0, 01) and Exp(6>), where 61 and 6, are the censor-
ing parameters which determine the censoring proportion of X1, X2, ..., X,. Three
different values of 6 = {61, 6>} to achieve 10, 20, and 30% censoring proportion
of X1, Xs, ..., X, are calculated by P(X > Y) = 10%, P(X > Y) = 20%, and
P(X > Y) = 30%, respectively. For example, when the censoring proportion is 10%,
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the censoring parameter 6 can be obtained in the following way.

P@E=12,80)=PY =X =<00,0=<Y =<0)

1 [ 2
0.1=— [ (1—e ™ FF)dx
1=z / :

The censoring parameter 6 is selected for 10, 20, and 30% are 0.188, 0.376, and 0.565,
respectively. We provide steps to obtain critical values via simulation as follows.

Step 1: We generate data with various sample sizes X1, X2, ..., X, from LFRD(1, 1).
The censoring time observations Y7, Y2, .. ., ¥, generated from Uniform(0, 6)
or Exp(6), where 6 is the censoring parameter and it takes values 0.188, 0.376,
and 0.565 for the desired nominal censoring proportions of 10, 20, and 30%,
respectively.

Step 2: For each generated sample, we calculate the log-likelihood ratio test statistic
Z,.

Step 3: We repeat the above steps N = 1000 times. Then the critical value is the
100(1 — «)th quantile of the asymptotic distribution obtained in Step 2, where
the significance level « = 0.01, 0.05, and 0.1.

The asymptotic critical values are presented in Table 1.

2.2 Confidence Distribution, Profile Log-Likelihood and Deviance Function

Confidence distributions (CD) are distribution estimates to be interpreted as distribu-
tions of epistemic probabilities. The concept of a CD is analogous to a point estimator
which may be considered a sample-dependent distribution that describes confidence
intervals of all levels for a parameter of interest. Schweder and Hjort [20] provides
a formal definition of the CD. In addition, the theoretical properties of the CD were
extensively investigated by [21]. A detailed study of recent developments in CD has
been given by [33]. More applications of the CD, such as bootstrap distributions,
p-value functions, normalized likelihood functions, and Bayesian posteriors, among
others, can be found in the literature. Interested readers may refer to [20, 25-28].

Cunen et al. [6] investigated the CD for change point analysis and construct confi-
dence curves for change locations using the log-likelihood approach. Ratnasingam and
Ning [16] examined the change point detection procedure based on the CD combined
with the modified information criterion (MIC) to construct the confidence set for the
change estimate for a skew normal change point model. In this paper, we study the
CD-based procedure along with log-likelihood for LFR distribution with predefined
censoring rates. Next, we define a procedure to construct a confidence curve for the
LFR change point model.

By maximizing the log-likelihood function defined in (15) of a given k, we can
obtain the profile log-likelihood function as follows.

Corof (k) = max (C(k, ©r, Or)) = £(k, Or, O), (22)
©r,0r
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Table 1 Critical values

Censoring proportion n o
0.10 0.05 0.01
Unif Exp Unif Exp Unif Exp
10% 50 5.0479 5.7437 5.6971 6.4269 6.9139 7.8907
70 5.2766 6.1986 5.9888 6.8573 7.1433 8.4002
80 5.5543 6.2500 6.1159 7.0724 7.2960 9.4135
100 5.6800 6.4602 6.3707 7.0710 8.6988 8.6506
120 5.9543 6.8043 6.5633 7.5445 8.0500 8.5234
150 6.1471 7.1785 6.8932 7.8760 8.7705 8.8895
180 6.5444 7.1809 7.2683 7.8028 9.2532 9.4725
200 6.7155 7.6634 7.4235 8.4876 9.2955 10.1574
250 7.0765 7.7644 7.7020 8.6036 9.5498 10.8396
300 7.2570 7.8172 8.1147 8.5838 9.6960 9.6316
20% 50 5.1018 5.8791 5.5282 6.4193 6.7381 8.1416
70 5.3899 6.2923 6.1077 7.0305 7.2452 8.7102
80 5.6840 6.5105 6.4724 7.1967 7.8984 9.0336
100 5.7330 6.8311 6.4448 7.6074 8.0667 9.4676
120 6.2675 6.9218 6.9924 7.6315 8.9820 8.7816
150 6.4339 7.1589 7.1341 7.8910 8.6351 9.3840
180 6.5514 7.4047 7.2280 8.2279 8.8312 9.8598
200 6.6457 7.5086 7.3258 8.3124 8.8651 9.8869
250 6.7988 7.6448 7.4857 8.1717 9.1376 9.7778
300 7.0682 8.0576 7.7797 8.9030 9.1660 10.4283
30% 50 5.1473 5.9394 5.7756 6.5365 7.1700 8.3375
70 5.5544 6.2517 6.0702 7.0560 7.7614 9.2413
80 5.7875 6.6184 6.6001 7.5314 7.8760 9.4933
100 6.0460 6.5152 6.7817 7.3224 8.2742 9.1177
120 6.2877 6.8603 6.9330 7.7574 8.8020 9.6408
150 6.4321 7.1060 7.2360 7.7950 8.8030 9.1790
180 6.5584 7.4027 7.1352 8.1393 8.8008 9.1584
200 6.6701 7.6056 7.5470 8.2645 9.2626 9.7597
250 6.9870 7.7921 7.6455 8.6692 8.5804 10.6687
300 7.1211 7.9195 7.8438 8.6550 9.8231 10.2005

where © L and © g are MLEs of ® and O, respectively. The estimated change point
location k corresponds to the maxy (mef (k)). The deviance function is defined as

Dk, X) = 2[Lprof (k) — Lprof (K) ],

(23)

@ Springer



12 Page 10 0of 22 Journal of Statistical Theory and Practice (2023) 17:12

where x = (x1, x2, ..., x,). The confidence curve for k based on the deviance function
can be obtained through simulation.

cc(k, Xobs) = @k (D(ka Xobs)) = Pk,(:)L,(:)R (D(k’ x) < D(k, Xobs))~ (24)
where the cc(k, Xobs) < o under the true value of k. By simulation, we compute
1B

cclk, Xobs) = — Y I(D(k.x5) < D(k. Xos)). (25)
j=1

=

for a large number of B of simulated copies of dataset X,ps. For each possible value of
k, we simulated data x*, j = 1, ..., B from f(x, ®;) and f(x, ©g) to the left and
right side of k, respectively. Furthermore, the change point location is estimated by
(19). For more details, we refer the readers to [6, 16].

3 Simulation Study

In this section, we conduct a simulation study to evaluate the performance of the
proposed method. First, we verify the null asymptotic distribution of Z, stated in
Theorem 2.1 numerically. The data is obtained from LFRD (1, 1). For different sample
sizes n = {50, 100, 200} and various censoring proporiions, we sketch the standard
Gumbel distribution quantile—quantile (Q—Q) plot for Z,, values in Figs. 1, 2 gnd 3.
According to the graphs, we observe that the null asymptotic distribution of Z,, can
be approximated to the standard Gumbel distribution and fit reasonably well when the
sample size increases. This confirms the result given in Theorem 2.1.

Secondly, we conduct the power simulation study. In this case, simultaneous
changes in the parameters are considered. The pre-change data are always gener-
ated from LFRD (1, 1). The post-change data are generated from LFRD (1.25, 1.25),
LFRD (1.5, 1.5), LFRD (1.75, 1.75), and LFRD (2, 3). Simulations are conducted for
sample sizes n = 50, 100, and 150. The values of true change point k are chosen to
be {15, 20, 25}, {25, 35, 50}, {25, 50, 75} for sample sizes 50, 100, and 150, respec-
tively. In our simulations, we consider only the true change-point positions below or
equal to the midpoint of the data set due to the symmetric property of the perfor-
mance. We generate the censoring time with different censoring times from a uniform
distribution and an exponential distribution with different censoring rates consider-
ing 10, 20, and 30%. The results are based on 1000 replications. The results are
summarized in Tables 2, 3 and 4. We notice that when the difference between the
parameters increases the test power increases. For example, in Table 2 for sample size
n =50, =0.05k =151 = 1.25, and B = 1.25 the power is 0.105, however,
the power is 0.526 when A = 1.5, and § = 2.5. Based on Tables 2, 3 and 4, it is
evident that the power of the test increases as the sample size n increases. From the
simulation results, we observe that the power of the test increases as the increase of
censoring proportion when the censoring distribution is Exponential. For instance,
when the sample size n = 50, k = 15, and the censoring proportion is 10%, the power
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Fig. 1 The Gumbel Q-Q plot of Zn for n = 50 for complete, and various censoring proportions, 10, 20,
and 30%

of the test is 0.842. The power increases to 0.845 and 0.856 as a censoring proportion
increases to 20 and 30%, respectively.

Next, we conduct a simulation study for the coverage probability and confidence
sets of the change point estimator. We consider various sample sizes, including
n = {50, 100, 150}, and the nominal level « = {0.90, 0.95, 0.99}. Under the null
hypothesis, the data are generated from LFRD (1,1). The post-change data are gener-
ated from LFRD (1.25, 1.25), LFRD (1.5, 1.5), LFRD (1.75, 1.75), and LFRD (2, 3).
We generate the censoring time with different censoring times from an exponential
distribution with different censoring rates, considering 10, 20, and 30%. We consider
two criteria to determine the goodness of the procedure. They are the coverage proba-
bility and average size of confidence sets where the size of a confidence set is defined
by the number of estimated k belonging to the confidence set for a given nominal level
a. In general, if the procedure is good, then it should lead to a narrower confidence set
{k : cc(k, x) < o} and the coverage probability preferably close to the nominal level
«. The results are summarized in Tables 5 and 6. For example, in Table 5 for sample
sizen = 50,k = 15,1 = 1.25, B = 1.25, « = 0.50, and censoring proportion is 10%
the coverage probability is 0.39, and the average size of the confidence set is 17.30.
As the differences between A and § increase, we see a corresponding increase in the
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Fig.2 The Gumbel Q-Q plot of Z,, for n = 100 for complete, and various censoring proportions, 10, 20,
and 30%

coverage probability (CP) and decrease in the average size of confidence sets. We also
observe that the censoring proportion increases the coverage probability decreases
(Table 7).

4 Applications

In this section, we apply the proposed testing procedure to two real data sets. The first
data set is from the R package survival: Veterans administration lung cancer data and
the second data set is from the R package relsurv: acute myocardial infarction data set.
As the censoring distribution, the uniform distribution is used in both applications.

4.1 Veterans’ Administration Lung Cancer Study

We adopt the veterans’ administration lung cancer data in the survival package. The
data were initially studied by [8]. Survival times are classified into two categories
based on the two treatment regimens for lung cancer and the patient’s age survival
times in two groups. Group 1 consists of 69 patients, while Group 2 consists of 68
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Fig.3 The Gumbel Q-Q plot of Zn for n = 200 for complete, and various censoring proportions, 10, 20,

and 30%

Table 2 Power comparison for sample size n = 50 and k = {15, 20, 25}

Censoring Proportion & LFRD (A, B)
(1.25,1.25) (1.5,2.5) (1.75,2.75) (2,3)
Unif Exp Unif Exp Unif Exp Unif Exp
10% 15 0677 0.842 0.705 0989 0.714  0.998 0.754  1.000
20  0.683  0.849 0.719 0988  0.725  0.999 0.768  1.000
25 0716  0.853 0.792 0991 0.780  1.000 0.750  1.000
20% 15 0770 0.845 0.790 0986  0.852  0.998 0.860  1.000
20 0.778  0.856 0.799 0988  0.859  0.999 0.886  1.000
25 0.789  0.872 0.805 0992 0.865 1.000 0.895  1.000
30% 15 0775 0.856 0.833 0988 0.877  0.997 0.909  1.000
20 0.792 0.871 0.849 0989 0.872  0.999 0918  1.000
25 0812 0.861 0.869 0.994 0902 1.000 0.949  1.000
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Table 3 Power comparison for sample size n = 100 and k = {25, 35, 50}

Censoring proportion  k LFRD (%, B)
(1.25,1.25) (1.5,2.5) (1.75,2.75) (2,3)
Unif Exp Unif Exp Unif Exp Unif Exp

10% 25 0.812  0.999 0.844 1.000 0.845 1.000 0.889  1.000
35 0.835  1.000 0.861  1.000 0.882  1.000 0.905  1.000
50 0.851  1.000 0.878 1.000 0.881  1.000 0911  1.000
20% 25 0.849  1.000 0.901  1.000 0.935  1.000 0961  1.000
35 0.858  1.000 0.924  1.000 0.950 1.000 0.980  1.000
50 0.876  1.000 0.947  1.000 0.967  1.000 0.985  1.000
30% 25  0.844  1.000 0916 1.000 0.971  1.000 0.990  1.000
35  0.855  1.000 0.930  1.000  0.977  1.000 0.990  1.000
50 0.880  1.000 0.953  1.000  0.990  1.000 0.998  1.000

Table 4 Power comparison for sample size n = 150 and k = {25, 50, 75}

Censoring proportion  k LFRD (4, B)
(1.25,1.25) (1.5,2.5) (1.75,2.75) (2,3)
Unif Exp Unif Exp Unif Exp Unif Exp

10% 25  0.860 1.000 0.897  1.000  0.908  1.000 0.921  1.000
50 0.872  1.000 0916 1.000 0.941  1.000 0.958  1.000
75 0.881  1.000 0942  1.000 0.964 1.000 0972 1.000
20% 25 0.874  1.000 0.901  1.000 0.943  1.000 0.970  1.000
50 0.882  1.000 0946  1.000 0.982  1.000 0.994  1.000
75 0.893  1.000 0.957 1.000 0.988  1.000 0.999  1.000
30% 25 0906  1.000 0.953  1.000  0.977  1.000 0.995  1.000
50 0919  1.000 0976  1.000  0.999  1.000 1.000  1.000
75 0.938  1.000 0.991  1.000 0.999  1.000 1.000  1.000

patients. We considered the censoring proportions 8 and 6%, respectively. Two groups
are shown in Fig. 4.

We apply the proposed approach along with the binary segmentation proce-
dure (see, [30]) to detect multiple change points. We found that Group 1 and
Group 2 have a change point at 54th and 15th positions, respectively. More-
over, the 95% confidence sets for the estimated change location for Group 1 is
{41,42,46,47,48, 49,50, 51, 52, 53, 54, 55, 56}, and for Group 2 is {13, 14, 15}.
The corresponding change point location and the 95% confidence sets are graphed
in Figs. 5 and 6, respectively.

4.2 Acute Myocardial Infarction Data

The second data set is about acute myocardial infarction. For the purpose of this
analysis, we consider a subset of data from a study carried out at the University
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Table 5 Coverage probability and average size of confidence sets for n = 50 and k = {15, 20, 25}

Censoring proportion & o LFRD (%, B)
(1.25,1.25) (1.5,2.5) (1.75,2.75) (2,3)
CP Size CP Size CP Size CP Size

10% 15 050 039 17.30 0.54 17.08 0.56 16.24 0.61 1591
090 0.82 35.57 0.87 33.65 0.89 32.00 0.90 30.32
095 0.89 39.05 092 3731 093 3590 0.94 34.48
099 094 4143 096 4095 0.96 4035 0.97 39.72

20 050 040 17.56 055 17.14 0.58 16.55 0.62 15.71
090 083 35.72 0.88 3372 090 32.13 091 29.95
095 090 39.06 093 3739 095 36.02 0.95 34.05
099 094 4147 096 4131 097 40.85 0.98 39.78

25 050 041 17.59 056 17.04 0.59 16.68 0.63 1572
090 0.84 35.64 0.89 3386 091 32.09 092 2991
095 091 39.04 094 3752 095 36.04 095 34.16
099 094 41.53 096 4040 097 39.89 0.98 38.99

20% 15 050 037 1658 049 1639 0.55 1579 0.59 15.01
090 0.81 35.05 0.86 34.03 0.87 32.63 0.88 31.12
095 088 38.28 092 3755 092 36.19 092 35.02
099 093 40.81 095 40.02 095 39.80 0.96 39.42

20 050 038 1653 0.50 1627 0.56 15.93 0.60 1532
090 0.82 35.07 0.86 3373 0.88 3251 0.89  30.59
095 0.89 38.30 092 3759 093 3636 0.94 3457
099 094 40.83 096 4021 096 39.75 0.97 38.87

25 050 039 16.72 051 1639 0.57 1593 0.60 15.23
090 082 35.16 0.87 3383 0.89 3273 091 31.32
095 0.88 3841 092 3758 0.94 3658 095 3534
0.99 093 40.96 096 3921 097 39.03 0.97 3852

30% 15 050 037 16.72 048 1630 0.51 1573 0.56 15.21
090 0.81 35.05 085 3394 086 16.73 0.87 31.83
095 0.88 38.18 090 3741 091 36.61 0.92 35.63
099 093 40.18 094 3983 095 39.54 0.95 39.16

20 050 0.38 16.80 049 16.44 0.53 15.79 0.57 15.09
090 0.82 35.02 0.85 3387 0.87 3285 0.88 31.09
095 088 38.24 090 3387 091 36.60 092 35.19
099 093 40.85 094 4024 095 39.74 0.96 39.29

25 050 040 16.71 0.50 1631 0.55 15.60 0.58 15.00
0.90 083 35.06 0.85 3382 0.87 33.07 0.90 32.16
095 089 38.25 091 3753 093 36.86 094 36.03
099 094 40.85 095 4037 096 39.97 097 3933
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Table 6 Coverage probability and average size of confidence sets for n = 100 and k = {25, 35, 50}

Censoring proportion & o LFRD (%, B)
(1.25,1.25) (1.5,2.5) (1.75,2.75) (2,3)
CP Size CP Size CP Size CP Size

10% 25 050 033 2634 0.56 24.48 0.60 21.19 0.64 19.29
090 0.77 67.93 0.87 56.69 0.89 4838 091 41.68
095 085 7746 092 6723 093 58098 095 51.29
099 094 87.78 096 81.61 097 7540 0.98  68.90

35 050 034 2628 0.57 2248 0.62 19.62 0.65 17.27
090 0.78 67.78 0.88 5335 090 4474 092 37.76
095 087 77.62 093 6472 094 5524 095 46.72
099 095 88.13 097 8088 0.98 7348 0.98 64.82

50 050 036 2581 0.58 2359 0.63 19.95 0.66 17.36
090 0.80 67.88 0.89 5329 091 4484 0.92 3740
095 0.89 78.11 093 6392 095 5521 0.96 46.53
099 096 88.44 097 8024 098 72.70 0.99 64.44

20% 25 050 030 26.56 0.51 2565 0.58 2243 0.61 21.07
090 0.78 68.95 0.85 5934 0.88 52.19 091 46.00
095 087 79.11 091 6987 093 6261 094 56.34
099 094 88.56 095 8259 096 78.02 098 7331

35 050 033 2724 0.52 2401 0.59 2142 0.62 18.86
090 0.79 68.65 0.86 57.16 0.89 48091 0.89 4133
095 0.88 78.85 093 68.04 094 5955 094 50.79
099 095 88.75 097 8234 097 76.63 0.98 69.76

50 050 033 26.15 0.54 2459 0.61 2263 0.64 18.71
090 0.80 68.33 0.87 56.84 0.90 49.85 091 4151
095 0.89 78.95 092 67.64 093 60.13 095 5l1.14
099 095 88.96 097 8278 098 77.09 0.98 69.62

30% 25 050 030 2543 049 2662 0.55 2436 0.60 23.07
090 0.77 68.80 0.85 6254 0.87 56.39 0.90 50.77
095 0.85 78.61 091 7252 093 67.22 0.94  60.83
099 093 87.53 095 84.44 097 8147 0.97 77.00

35 050 031 2620 0.50 2532 0.56 2334 0.61 20.84
090 0.78 68.67 0.85 60.16 0.88 23.34 0.89 46.10
095 086 78.84 092 7083 094 64.10 095 56.43
099 094 87.82 096 84.13 097 79.68 098 74.27

50 050 033 26.03 0.51 2526 0.57 2255 0.63  20.42
090 080 68.12 0.86 5937 0.88 52.59 091 4558
095 087 7827 092 7030 093 6351 095 56.08
099 094 87.56 096 8390 097 79.63 098 7433
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Clinical Center in Ljubljana. The data were originally studied by [15]. The data set
provides details of 972 patients between the ages of 40 and 80, of which 48% have
censored outcomes. This data set was studied in the literature, for example, see [31]
and [29]. Our proposed approach is used to identify structural changes in the data
set. The binary segmentation method by [30] is used to identify potential multiple
changes. The change point estimates are k = {78, 184,532, 842, 881, 962}. The 95%
confidence sets of the change point estimates are indicated by the horizontal red dashed
line in Fig. 7.
In comparison with [31], we obtain the following equation:

yi = (11.700 — 0.049age; — 0.343gender;) I(1<i<78)
+ (11.129 — 0.042age; — 0.461gender;) I(79<;<184)

Group 1 Group 2
1000 -
750
k]
£ 500-
|_
250
\,
0 20 40 B0 0 20 40 B0
Index Index

Fig.4 Failure times

Group 1 Group 2
1000- 1
750- 1
L)
£ s500- ]
|_
250 - 1
0- 1 1 1 1 L 1 1 1 1
0 20 40 60 0 20 40 60
Index Index

Fig.5 Failure times data with change-point estimate

@ Springer



12 Page 20 of 22 Journal of Statistical Theory and Practice (2023) 17:12
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Fig.6 95% confidence set of change point location
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Fig.7 a Confidence curve for change point estimate k= 184, b Confidence curve for the subset 2 < i <
183), the change point estimate k = 78, ¢ Confidence curve for the subset (185 < i < 972), the change
point estimate k = 842, d Confidence curve for the subset (185 < i < 841), the change point estimate
k = 532, e Confidence curve for the subset (843 < i < 972), the change point estimate k=881,andf
Confidence curve for the subset (882 < i < 972), the change point estimate k=962
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+ (11.697 — 0.062age; + 0.054gender;) I(185<i<532)
+ (10.241 — 0.029age; — 0.120gender;) I(533<i<842)
+ (10.738 — 0.045age; — 0.099gender;) I(g43<;i<881)
+ (10.433 — 0.042age;0.215gender;) I(882<i<962)

+ (6.473 4 0.010age; + 0.517gender;) 1(963<i<972)

However, [31]’s method considers randomly censored linear models without any
change point.

5 Conclusion

In this paper, we propose a change point detection procedure in Linear Failure Rate
distribution using the likelihood ratio test method in combining with the confidence
distribution to construct the confidence sets of change locations, instead of providing
point estimates only. Moreover, we consider the scenario of random censorship. Our
proposed framework can be generalized to any combination of covariate distributions.
We establish the asymptotic properties of the test statistic. Simulations are carried
out under various conditions with different censoring distributions to demonstrate
the advantages of the proposed method. Two real data applications are provided to
illustrate the advantage of the proposed method.
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