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Abstract
In this paper, we develop a procedure for change point detection problem in the linear
failure rate (LFR) distribution for random censored data. The asymptotic results of
the associated test statistic have been established. Moreover, we construct the confi-
dence sets for change locations based on the confidence distribution (CD). Simulations
have been conducted to investigate the performance of the proposed procedure under
different random censoring distributions. Two real data applications are provided to
illustrate the detection procedure.

Keywords Change point · Linear failure rate · Confidence sets · Confidence
distribution

1 Introduction

Change point analysis plays an important role in statistical analysis. The change point
problem was initially introduced by [13, 14] to identify a single structural change in
a parameter. Since then, it has been extensively studied in the literature. For example,
[23, 24] studied the Bayesian approach to detect changes in the mean of a normal
distribution. Chen and Gupta [4] and Cosörgö and Horváth [5] and established asymp-
totic properties on various parametric change point models. The likelihood ratio test
for the known and unknown variance for testing the mean change was discussed by
[7]. The asymptotic null distribution of a single change point detection for known and
unknown variance was investigated by [32]. The multiple change point problem was
first considered by [30] who proposed a binary segmentation (BS) procedure, which
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applies recursively to all subsequent partitions until no further significant change is
detected. Chen and Gupta [3] studied the variance change point problem for univariate
Gaussian model using the information criterion approach. The change point problem
for generalized lambda distribution was studied by [11]. Ning et al. [10, 12] proposed
nonparametric methods to detect the different types of changes in the mean. Rat-
nasingam and Ning [16] studied a confidence distribution based detection procedure
for a skew normal change-point model incorporating modified information criterion.
Recently, [18] proposed a method based on the modified information criterion and
the confidence distribution for detecting and estimating changes in a three-parameter
Weibull distribution.

Exponential, Rayleigh, linear failure rate, or generalized exponential distributions
are often used in life-testing and reliability studies. The linear failure rate (LFR)
distribution can be easily generalized to many well-known distributions such as the
exponential distribution and the Rayleigh distribution. Bain [1] studied the statistical
properties of the parameters of LFR distribution in the context of type II censorship.
The probability density function of the LFR distribution is

f (x) = (λ + 2βx)e−(λx+2βx2), x > 0, λ > 0, β > 0, (1)

where λ and β are the shape and scale parameters, respectively. The cumulative dis-
tribution function (CDF) of the LFR distribution is

F(x) = 1 − e−(λx+βx2). (2)

The LFR hazard function is

h(x) = f (x)

1 − F(x)
= (λ + 2βx), (3)

where x > 0, λ > 0, β > 0. The LFR distribution is very useful in life testing
and reliability studies for modeling the life length of a system or component when
failures occur randomly and also from aging or wear-out. The following are some
useful properties of the LFR distribution.

a. If λ = 0 and β �= 0, then the LFR distribution is reduced to the Rayleigh distribu-
tion with parameter β.

b. If β = 0 and λ �= 0, then the LFR distribution is reduced to the exponential
distribution with parameter λ.

The LFR distribution with its properties and applications has been studied extensively
in the literature. For example, the recurrence relations for the moment of the order
statistics from the LFR distribution were established by [2]. In the life-testing and
reliability studies, [22] studied various LFR distribution properties and applications.
TheMonteCarlomethods forBayesian inference on the linear hazard distributionwere
developed by [9]. Sarhan and Kundu [19] considered the generalized linear failure
rate distribution and discussed its properties and the maximum likelihood estimations
(MLEs). Recently, [17] studied the statistical properties of a new four-parameter called
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as Lomax-linear failure rate distribution. To the best of our knowledge, a few works
focus on the change point problem of the LFR distribution. In this paper, we propose
a detection procedure regarding the LFR distribution based on the likelihood ratio test
(LRT) under random censorship.

This paper is organized as follows. In Sect. 2, we develop a change point detection
procedure for the LFR distribution and the procedure to construct the confidence set
of a change with a given nominal level through the confidence distribution (CD).
Simulations to investigate the performance of the proposed procedures in terms of
powers, coverage probabilities, and lengths of confidence sets are conducted in Sect. 3.
Two real data applications are given in Sect. 4 to illustrate the proposed procedures.
Some discussion is provided in Sect. 5.

2 Main Results

2.1 Likelihood Ratio Test for LFR Distribution

Let X1, X2, . . . , Xn be a sequence of independent observations belonging to a LFR
distribution. The change point problem for a LFR distribution is defined as follows.

Xi ∼
{
LFR(λL , βL); i = 1, . . . , k

LFR(λR, βR); i = (k + 1), . . . , n,
(4)

where the PDF and CDF of LFR distribution are given in (1) and (15), respectively.
We are testing the following hypotheses.

H0 : λ1 = λ2 = · · · = λn = λ; β1 = β2 = · · · = βn = β,

versus

H1 : λ1 = · · · = λk︸ ︷︷ ︸
λL

�= λk+1 = · · · = λn︸ ︷︷ ︸
λR

; β1 = · · · = βk︸ ︷︷ ︸
βL

�= βk+1 = · · · = βn︸ ︷︷ ︸
βR

,

where (λ, β), (λL , βL) and (λR, βR) are unknownparameters andneed to be estimated.
Further, k is the unknown change location and needs to be estimated as well. Let
1 < r < n be a natural number and is the number of observations presented if the data
sample is censored. Suppose X1, . . . , Xr denotes the r smallest observations from a
sample of size n from the LFR model. Following [22], the likelihood function of the
LFR distribution is,

L = n!
(n − r)!

r∏
i=1

(λ + 2βX(i)) exp (−(λU1 + βU2)), (5)
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where

U1 =
r∑

i=1

X(i) + (n − r)X(r) and U2 =
r∑

i=1

X2
(i) + (n − r)X2

(r). (6)

Under the null hypothesis, the log-likelihood function is given as,

lH0 = log(L0) = log

(
n!

(n − r)!
)

+
r∑

i=1

{
log
(
λ + 2βX(i)

)− (λU1 + βU2)
}
. (7)

The first derivatives of the log likelihood function are given as below.

∂lH0

∂λ
=

r∑
i=1

1

(λ + 2βxi )
−U1, and

∂lH0

∂β
=

r∑
i=1

2xi
(λ + 2βxi )

−U2.

We note that the likelihood function in (5) is defined for censored data if r <

n. If n = r , the complete sample is considered. Then, for a complete sample, U1 and
U2 can be simplified as follows.

U1 =
n∑

i=1

X(i) and U2 =
n∑

i=1

X2
(i),

According to [1], we have

λ̂U1 + β̂U2 = r . (8)

where U1 and U2 are defined in (6), and λ̂ and β̂ are MLEs of λ and β. We can solve
Eq. (8) for λ̂ and consider λ̂ as a function of β̂, then we may substitute λ̂ = λ̂(β̂)

into the likelihood function while treating the other occurrence of β as β̂. Bain [1]
proposed this idea to achieve a reduction of the MLE problem to a single-variable
iterative procedure which reduces the two-variable iteration to that in a single variable
say β̂ through the so-called pseudo-likelihood function. Using the relation (8) and the
likelihood function (5) we construct the pseudo-likelihood,

L = n!
(n − r)!

r∏
i=1

{(
r − βU2

U1

)
+ 2βX(i)

}
exp (−r). (9)

Then, the pseudo log-likelihood function of the LFR distribution is

lH0(λ, β) =
r∑

i=1

(n − r + i) +
r∑

i=1

log

{(
r − βU2

U1

)
+ 2βX(i)

}
− r . (10)
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Now the maximum likelihood estimate (MLE) of β is obtained by

∂lH0(λ, β)

∂β
= ∂

∂β

[
r∑

i=1

log

{(
r − βU2

U1

)
+ 2βX(i)

}]

=
r∑

i=1

[(
U1

r − βU2 + 2βX(i)U1

)
· ∂

∂β

(
r

U1
+ 1

U1

(
2βX(i)U1 − βU2

))]

=
r∑

i=1

[(
U1

r − βU2 + 2βX(i)U1

)
· 1

U1
· (2X(i)U1 −U2

)]

=
r∑

i=1

[
2U1X(i) −U2

r − βU2 + 2βX(i)U1

]
. (11)

Similar to [1, 22], we let h(β) as

h(β) =
r∑

i=1

[
2U1X(i) −U2

r − βU2 + 2βX(i)U1

]
. (12)

Taking the first derivative of h gives

∂h(β)

∂β
=

r∑
i=1

[
−
(

2U1X(i) −U2(
r − βU2 + 2βX(i)U1

)2
)

· (−U 2
2 + 2U1X(i)

)]

= −
r∑

i=1

⎡
⎢⎣

(
2U1X(i) −U2

)2
(
r − βU2 + 2βX(i)U1

)2
⎤
⎥⎦ < 0. (13)

Therefore, the unique value of β such that h(β) = 0 for β̂ ∈ (0, r
U2

)
. The MLE of λ

is

λ̂ = r − β̂U2

U1
. (14)

Remark The “pseudo-likelihood” method proposed by [1] simplifies the estimation
procedure; however, this method is easy to produce misleading results as pointed out
by [22]. To tackle this issue, [1] suggested the range of searching β̂ be restricted
within (0, r/U2). Sen and Bhattacharyya [22] also verified that the solution found in
this restricted range is indeed the solution of the original likelihood function, that is,
maximizes the original likelihood function. This restricted range is satisfied due to
Eq. (8).

Suppose X1, . . . , Xk be a sequence of independent random variables with the den-
sity function f (x,�L) and Xk+1, . . . , Xn coming from the populationwith the density
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function f (x,�R). Now the log-likelihood function is defined as

�(k,�L ,�R) =
k∑

i=1

log
(
f (xi ,�L)

)+
n∑

i=k+1

log
(
f (xi ,�R)

)
, (15)

where�L and�R are the parameter space of the pre-change and post-change distribu-
tions, respectively. Thus, under the alternative hypothesis, the log-likelihood function
is,

lH1 = log(L1) = lH1(k, λL , βL , λR, βR) =
k∑

i=1

log( f (xi , λL , βL))

+
n∑

i=k+1

log( f (xi , λR, βR)). (16)

The MLEs of λL , βL , λR , and βR can be estimated by solving the following equa-
tions.

∂lH1

∂λL
= 0,

∂lH1

∂βL
= 0,

∂lH1

∂λR
= 0, and

∂lH1

∂βR
= 0.

The log-likelihood ratio can be defined as,

�k = −2 log

(
L0

L1

)
= −2

{
log L0 − log L1

}
. (17)

The log-likelihood ratio test statistic Zn can be obtained as Zn = max1<k<n �k .
We have sufficient evidence to reject the null hypothesis for a large value of the log-
likelihood ratio test statistic Zn if there exists a change. If the change point location
is in the beginning or the end of the data set, we may not have enough observations
to estimate the MLEs of the parameters. Thus, we consider the trimmed version of
the test statistic. Reprising [34], the trimmed version of the test statistic is defined as
follows.

Z̃n = max
�<k<n−�

�k, (18)

where � = 2[log(n)]. We can estimate the change point by k̂ such that

k̂ = max
�<k<n−�

�k . (19)

This procedure can easily be replicated if a second change point is suspected.

Theorem 2.1 Under the null hypothesis, as n −→ ∞, for all t ∈ R, we have

lim
n−→∞ P

(
a log u(n) Z̃n

1

2
− b log u(n) ≤ t

)
= e−et , (20)
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where

a(log u(n)) = (2 log log u(n))1/2

b(log u(n)) = 2 log log u(n) + 3

2
log log log u(n) − log�

(
3

2

)
,

u(n) = n2 − 2n log(n) + (2 log(n)
)2

(2 log n)2
.

Proof Following [5] Theorem 1.3.1,

1 − α = P
(
Z̃n < Cα

n

∣∣H0
)

= P

(
0 < Z̃n

1

2
< Cα

n

∣∣H0

)

= P

(
−b log u(n) < a log(u(n))Z̃n

1

2
− b log u(n)

< a log u(n)(Cα
n )1/2 − b log u(n)

∣∣H0

)
= P

(
a log u(n)Z̃n

1

2
− b log u(n) < a log u(n)(Cα

n )1/2 − b log u(n)
∣∣H0

)

− P

(
a log u(n)Z̃n

1

2
− b log u(n) < −b log u(n)

∣∣H0

)

≈ exp
{− exp

{
b log u(n) − a log u(n)

(
Cα
n

)1/2}}− exp
{− exp

{
b log u(n)

}}
.

Therefore,

Cα
n ≈

[
log
(− log

(
1 − α + exp

{− exp
{
b log u(n)

}}))− b log u(n)

−a log u(n)

]2
. (21)

	


The theoretical critical values for the change point problem can be approximated
through Eq. (21). However, the theoretical critical values are unreliable when the
sample size is considerably small. Thus, we compute the asymptotic critical values
for the testing problem via simulations as follows. First, we generate data with vari-
ous sample sizes X1, X2, . . . , Xn from LFRD(1, 1). The censoring time observations
Y1,Y2, . . . ,Yn are from Uniform(0, θ1) and Exp(θ2), where θ1 and θ2 are the censor-
ing parameters which determine the censoring proportion of X1, X2, . . . , Xn . Three
different values of θ = {θ1, θ2} to achieve 10, 20, and 30% censoring proportion
of X1, X2, . . . , Xn are calculated by P(X ≥ Y ) = 10%, P(X ≥ Y ) = 20%, and
P(X ≥ Y ) = 30%, respectively. For example, when the censoring proportion is 10%,
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the censoring parameter θ can be obtained in the following way.

P(δ = 1|λ, β, θ) = P(Y ≤ X ≤ ∞, 0 ≤ Y ≤ θ)

0.1 = 1

θ

∫ θ

0

(
1 − e−(λx+βx2)) dx .

The censoring parameter θ is selected for 10, 20, and 30% are 0.188, 0.376, and 0.565,
respectively. We provide steps to obtain critical values via simulation as follows.

Step 1: Wegenerate datawith various sample sizes X1, X2, . . . , Xn fromLFRD(1, 1).
Thecensoring timeobservationsY1,Y2, . . . ,Yn generated fromUniform(0, θ)

orExp(θ), where θ is the censoring parameter and it takes values 0.188, 0.376,
and 0.565 for the desired nominal censoring proportions of 10, 20, and 30%,
respectively.

Step 2: For each generated sample, we calculate the log-likelihood ratio test statistic
Z̃n .

Step 3: We repeat the above steps N = 1000 times. Then the critical value is the
100(1−α)th quantile of the asymptotic distribution obtained in Step 2, where
the significance level α = 0.01, 0.05, and 0.1.

The asymptotic critical values are presented in Table 1.

2.2 Confidence Distribution, Profile Log-Likelihood and Deviance Function

Confidence distributions (CD) are distribution estimates to be interpreted as distribu-
tions of epistemic probabilities. The concept of a CD is analogous to a point estimator
which may be considered a sample-dependent distribution that describes confidence
intervals of all levels for a parameter of interest. Schweder and Hjort [20] provides
a formal definition of the CD. In addition, the theoretical properties of the CD were
extensively investigated by [21]. A detailed study of recent developments in CD has
been given by [33]. More applications of the CD, such as bootstrap distributions,
p-value functions, normalized likelihood functions, and Bayesian posteriors, among
others, can be found in the literature. Interested readers may refer to [20, 25–28].

Cunen et al. [6] investigated the CD for change point analysis and construct confi-
dence curves for change locations using the log-likelihood approach. Ratnasingam and
Ning [16] examined the change point detection procedure based on the CD combined
with the modified information criterion (MIC) to construct the confidence set for the
change estimate for a skew normal change point model. In this paper, we study the
CD-based procedure along with log-likelihood for LFR distribution with predefined
censoring rates. Next, we define a procedure to construct a confidence curve for the
LFR change point model.

By maximizing the log-likelihood function defined in (15) of a given k, we can
obtain the profile log-likelihood function as follows.

�prof(k) = max
�L ,�R

(
�(k,�L ,�R)

) = �
(
k, �̂L , �̂R

)
, (22)
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Table 1 Critical values

Censoring proportion n α

0.10 0.05 0.01
Unif Exp Unif Exp Unif Exp

10% 50 5.0479 5.7437 5.6971 6.4269 6.9139 7.8907

70 5.2766 6.1986 5.9888 6.8573 7.1433 8.4002

80 5.5543 6.2500 6.1159 7.0724 7.2960 9.4135

100 5.6800 6.4602 6.3707 7.0710 8.6988 8.6506

120 5.9543 6.8043 6.5633 7.5445 8.0500 8.5234

150 6.1471 7.1785 6.8932 7.8760 8.7705 8.8895

180 6.5444 7.1809 7.2683 7.8028 9.2532 9.4725

200 6.7155 7.6634 7.4235 8.4876 9.2955 10.1574

250 7.0765 7.7644 7.7020 8.6036 9.5498 10.8396

300 7.2570 7.8172 8.1147 8.5838 9.6960 9.6316

20% 50 5.1018 5.8791 5.5282 6.4193 6.7381 8.1416

70 5.3899 6.2923 6.1077 7.0305 7.2452 8.7102

80 5.6840 6.5105 6.4724 7.1967 7.8984 9.0336

100 5.7330 6.8311 6.4448 7.6074 8.0667 9.4676

120 6.2675 6.9218 6.9924 7.6315 8.9820 8.7816

150 6.4339 7.1589 7.1341 7.8910 8.6351 9.3840

180 6.5514 7.4047 7.2280 8.2279 8.8312 9.8598

200 6.6457 7.5086 7.3258 8.3124 8.8651 9.8869

250 6.7988 7.6448 7.4857 8.1717 9.1376 9.7778

300 7.0682 8.0576 7.7797 8.9030 9.1660 10.4283

30% 50 5.1473 5.9394 5.7756 6.5365 7.1700 8.3375

70 5.5544 6.2517 6.0702 7.0560 7.7614 9.2413

80 5.7875 6.6184 6.6001 7.5314 7.8760 9.4933

100 6.0460 6.5152 6.7817 7.3224 8.2742 9.1177

120 6.2877 6.8603 6.9330 7.7574 8.8020 9.6408

150 6.4321 7.1060 7.2360 7.7950 8.8030 9.1790

180 6.5584 7.4027 7.1352 8.1393 8.8008 9.1584

200 6.6701 7.6056 7.5470 8.2645 9.2626 9.7597

250 6.9870 7.7921 7.6455 8.6692 8.5804 10.6687

300 7.1211 7.9195 7.8438 8.6550 9.8231 10.2005

where �̂L and �̂R are MLEs of�L and�R , respectively. The estimated change point
location k̂ corresponds to the maxk

(
�prof(k)

)
. The deviance function is defined as

D(k, x) = 2
[
�prof(k̂) − �prof(k)

]
, (23)
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where x = (x1, x2, . . . , xn). The confidence curve for k based on the deviance function
can be obtained through simulation.

cc(k, xobs) = ϕk
(D(k, xobs)

) = Pk,�̂L ,�̂R

(D(k, x) < D(k, xobs)
)
. (24)

where the cc(k, xobs) < α under the true value of k. By simulation, we compute

cc(k, xobs) = 1

B

B∑
j=1

I
(
D(k, x∗

j ) < D(k, xobs)
)
, (25)

for a large number of B of simulated copies of dataset xobs. For each possible value of
k, we simulated data x∗

j , j = 1, . . . , B from f (x,�L) and f (x,�R) to the left and
right side of k, respectively. Furthermore, the change point location is estimated by
(19). For more details, we refer the readers to [6, 16].

3 Simulation Study

In this section, we conduct a simulation study to evaluate the performance of the
proposed method. First, we verify the null asymptotic distribution of Z̃n stated in
Theorem 2.1 numerically. The data is obtained fromLFRD (1, 1). For different sample
sizes n = {50, 100, 200} and various censoring proportions, we sketch the standard
Gumbel distribution quantile–quantile (Q–Q) plot for Z̃n values in Figs. 1, 2 and 3.
According to the graphs, we observe that the null asymptotic distribution of Z̃n can
be approximated to the standard Gumbel distribution and fit reasonably well when the
sample size increases. This confirms the result given in Theorem 2.1.

Secondly, we conduct the power simulation study. In this case, simultaneous
changes in the parameters are considered. The pre-change data are always gener-
ated from LFRD (1, 1). The post-change data are generated from LFRD (1.25, 1.25),
LFRD (1.5, 1.5), LFRD (1.75, 1.75), and LFRD (2, 3). Simulations are conducted for
sample sizes n = 50, 100, and 150. The values of true change point k are chosen to
be {15, 20, 25}, {25, 35, 50}, {25, 50, 75} for sample sizes 50, 100, and 150, respec-
tively. In our simulations, we consider only the true change-point positions below or
equal to the midpoint of the data set due to the symmetric property of the perfor-
mance. We generate the censoring time with different censoring times from a uniform
distribution and an exponential distribution with different censoring rates consider-
ing 10, 20, and 30%. The results are based on 1000 replications. The results are
summarized in Tables 2, 3 and 4. We notice that when the difference between the
parameters increases the test power increases. For example, in Table 2 for sample size
n = 50, α = 0.05, k = 15, λ = 1.25, and β = 1.25 the power is 0.105, however,
the power is 0.526 when λ = 1.5, and β = 2.5. Based on Tables 2, 3 and 4, it is
evident that the power of the test increases as the sample size n increases. From the
simulation results, we observe that the power of the test increases as the increase of
censoring proportion when the censoring distribution is Exponential. For instance,
when the sample size n = 50, k = 15, and the censoring proportion is 10%, the power
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Fig. 1 The Gumbel Q–Q plot of Z̃n for n = 50 for complete, and various censoring proportions, 10, 20,
and 30%

of the test is 0.842. The power increases to 0.845 and 0.856 as a censoring proportion
increases to 20 and 30%, respectively.

Next, we conduct a simulation study for the coverage probability and confidence
sets of the change point estimator. We consider various sample sizes, including
n = {50, 100, 150}, and the nominal level α = {0.90, 0.95, 0.99}. Under the null
hypothesis, the data are generated from LFRD(1,1). The post-change data are gener-
ated from LFRD (1.25, 1.25), LFRD (1.5, 1.5), LFRD (1.75, 1.75), and LFRD (2, 3).
We generate the censoring time with different censoring times from an exponential
distribution with different censoring rates, considering 10, 20, and 30%. We consider
two criteria to determine the goodness of the procedure. They are the coverage proba-
bility and average size of confidence sets where the size of a confidence set is defined
by the number of estimated k belonging to the confidence set for a given nominal level
α. In general, if the procedure is good, then it should lead to a narrower confidence set
{k : cc(k, x) ≤ α} and the coverage probability preferably close to the nominal level
α. The results are summarized in Tables 5 and 6. For example, in Table 5 for sample
size n = 50, k = 15, λ = 1.25, β = 1.25, α = 0.50, and censoring proportion is 10%
the coverage probability is 0.39, and the average size of the confidence set is 17.30.
As the differences between λ and β increase, we see a corresponding increase in the
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Fig. 2 The Gumbel Q–Q plot of Z̃n for n = 100 for complete, and various censoring proportions, 10, 20,
and 30%

coverage probability (CP) and decrease in the average size of confidence sets. We also
observe that the censoring proportion increases the coverage probability decreases
(Table 7).

4 Applications

In this section, we apply the proposed testing procedure to two real data sets. The first
data set is from the R package survival: Veterans administration lung cancer data and
the second data set is from the R package relsurv: acute myocardial infarction data set.
As the censoring distribution, the uniform distribution is used in both applications.

4.1 Veterans’Administration Lung Cancer Study

We adopt the veterans’ administration lung cancer data in the survival package. The
data were initially studied by [8]. Survival times are classified into two categories
based on the two treatment regimens for lung cancer and the patient’s age survival
times in two groups. Group 1 consists of 69 patients, while Group 2 consists of 68

123



Journal of Statistical Theory and Practice            (2023) 17:12 Page 13 of 22    12 

Fig. 3 The Gumbel Q-Q plot of Z̃n for n = 200 for complete, and various censoring proportions, 10, 20,
and 30%

Table 2 Power comparison for sample size n = 50 and k = {15, 20, 25}
Censoring Proportion k LFRD (λ, β)

(1.25, 1.25) (1.5, 2.5) (1.75, 2.75) (2, 3)
Unif Exp Unif Exp Unif Exp Unif Exp

10% 15 0.677 0.842 0.705 0.989 0.714 0.998 0.754 1.000

20 0.683 0.849 0.719 0.988 0.725 0.999 0.768 1.000

25 0.716 0.853 0.792 0.991 0.780 1.000 0.750 1.000

20% 15 0.770 0.845 0.790 0.986 0.852 0.998 0.860 1.000

20 0.778 0.856 0.799 0.988 0.859 0.999 0.886 1.000

25 0.789 0.872 0.805 0.992 0.865 1.000 0.895 1.000

30% 15 0.775 0.856 0.833 0.988 0.877 0.997 0.909 1.000

20 0.792 0.871 0.849 0.989 0.872 0.999 0.918 1.000

25 0.812 0.861 0.869 0.994 0.902 1.000 0.949 1.000
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Table 3 Power comparison for sample size n = 100 and k = {25, 35, 50}
Censoring proportion k LFRD (λ, β)

(1.25, 1.25) (1.5, 2.5) (1.75, 2.75) (2, 3)
Unif Exp Unif Exp Unif Exp Unif Exp

10% 25 0.812 0.999 0.844 1.000 0.845 1.000 0.889 1.000

35 0.835 1.000 0.861 1.000 0.882 1.000 0.905 1.000

50 0.851 1.000 0.878 1.000 0.881 1.000 0.911 1.000

20% 25 0.849 1.000 0.901 1.000 0.935 1.000 0.961 1.000

35 0.858 1.000 0.924 1.000 0.950 1.000 0.980 1.000

50 0.876 1.000 0.947 1.000 0.967 1.000 0.985 1.000

30% 25 0.844 1.000 0.916 1.000 0.971 1.000 0.990 1.000

35 0.855 1.000 0.930 1.000 0.977 1.000 0.990 1.000

50 0.880 1.000 0.953 1.000 0.990 1.000 0.998 1.000

Table 4 Power comparison for sample size n = 150 and k = {25, 50, 75}
Censoring proportion k LFRD (λ, β)

(1.25, 1.25) (1.5, 2.5) (1.75, 2.75) (2, 3)
Unif Exp Unif Exp Unif Exp Unif Exp

10% 25 0.860 1.000 0.897 1.000 0.908 1.000 0.921 1.000

50 0.872 1.000 0.916 1.000 0.941 1.000 0.958 1.000

75 0.881 1.000 0.942 1.000 0.964 1.000 0.972 1.000

20% 25 0.874 1.000 0.901 1.000 0.943 1.000 0.970 1.000

50 0.882 1.000 0.946 1.000 0.982 1.000 0.994 1.000

75 0.893 1.000 0.957 1.000 0.988 1.000 0.999 1.000

30% 25 0.906 1.000 0.953 1.000 0.977 1.000 0.995 1.000

50 0.919 1.000 0.976 1.000 0.999 1.000 1.000 1.000

75 0.938 1.000 0.991 1.000 0.999 1.000 1.000 1.000

patients. We considered the censoring proportions 8 and 6%, respectively. Two groups
are shown in Fig. 4.

We apply the proposed approach along with the binary segmentation proce-
dure (see, [30]) to detect multiple change points. We found that Group 1 and
Group 2 have a change point at 54th and 15th positions, respectively. More-
over, the 95% confidence sets for the estimated change location for Group 1 is
{41, 42, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56}, and for Group 2 is {13, 14, 15}.
The corresponding change point location and the 95% confidence sets are graphed
in Figs. 5 and 6, respectively.

4.2 Acute Myocardial Infarction Data

The second data set is about acute myocardial infarction. For the purpose of this
analysis, we consider a subset of data from a study carried out at the University
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Table 5 Coverage probability and average size of confidence sets for n = 50 and k = {15, 20, 25}
Censoring proportion k α LFRD (λ, β)

(1.25, 1.25) (1.5, 2.5) (1.75, 2.75) (2, 3)
CP Size CP Size CP Size CP Size

10% 15 0.50 0.39 17.30 0.54 17.08 0.56 16.24 0.61 15.91

0.90 0.82 35.57 0.87 33.65 0.89 32.00 0.90 30.32

0.95 0.89 39.05 0.92 37.31 0.93 35.90 0.94 34.48

0.99 0.94 41.43 0.96 40.95 0.96 40.35 0.97 39.72

20 0.50 0.40 17.56 0.55 17.14 0.58 16.55 0.62 15.71

0.90 0.83 35.72 0.88 33.72 0.90 32.13 0.91 29.95

0.95 0.90 39.06 0.93 37.39 0.95 36.02 0.95 34.05

0.99 0.94 41.47 0.96 41.31 0.97 40.85 0.98 39.78

25 0.50 0.41 17.59 0.56 17.04 0.59 16.68 0.63 15.72

0.90 0.84 35.64 0.89 33.86 0.91 32.09 0.92 29.91

0.95 0.91 39.04 0.94 37.52 0.95 36.04 0.95 34.16

0.99 0.94 41.53 0.96 40.40 0.97 39.89 0.98 38.99

20% 15 0.50 0.37 16.58 0.49 16.39 0.55 15.79 0.59 15.01

0.90 0.81 35.05 0.86 34.03 0.87 32.63 0.88 31.12

0.95 0.88 38.28 0.92 37.55 0.92 36.19 0.92 35.02

0.99 0.93 40.81 0.95 40.02 0.95 39.80 0.96 39.42

20 0.50 0.38 16.53 0.50 16.27 0.56 15.93 0.60 15.32

0.90 0.82 35.07 0.86 33.73 0.88 32.51 0.89 30.59

0.95 0.89 38.30 0.92 37.59 0.93 36.36 0.94 34.57

0.99 0.94 40.83 0.96 40.21 0.96 39.75 0.97 38.87

25 0.50 0.39 16.72 0.51 16.39 0.57 15.93 0.60 15.23

0.90 0.82 35.16 0.87 33.83 0.89 32.73 0.91 31.32

0.95 0.88 38.41 0.92 37.58 0.94 36.58 0.95 35.34

0.99 0.93 40.96 0.96 39.21 0.97 39.03 0.97 38.52

30% 15 0.50 0.37 16.72 0.48 16.30 0.51 15.73 0.56 15.21

0.90 0.81 35.05 0.85 33.94 0.86 16.73 0.87 31.83

0.95 0.88 38.18 0.90 37.41 0.91 36.61 0.92 35.63

0.99 0.93 40.18 0.94 39.83 0.95 39.54 0.95 39.16

20 0.50 0.38 16.80 0.49 16.44 0.53 15.79 0.57 15.09

0.90 0.82 35.02 0.85 33.87 0.87 32.85 0.88 31.09

0.95 0.88 38.24 0.90 33.87 0.91 36.60 0.92 35.19

0.99 0.93 40.85 0.94 40.24 0.95 39.74 0.96 39.29

25 0.50 0.40 16.71 0.50 16.31 0.55 15.60 0.58 15.00

0.90 0.83 35.06 0.85 33.82 0.87 33.07 0.90 32.16

0.95 0.89 38.25 0.91 37.53 0.93 36.86 0.94 36.03

0.99 0.94 40.85 0.95 40.37 0.96 39.97 0.97 39.33
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Table 6 Coverage probability and average size of confidence sets for n = 100 and k = {25, 35, 50}
Censoring proportion k α LFRD (λ, β)

(1.25, 1.25) (1.5, 2.5) (1.75, 2.75) (2, 3)
CP Size CP Size CP Size CP Size

10% 25 0.50 0.33 26.34 0.56 24.48 0.60 21.19 0.64 19.29

0.90 0.77 67.93 0.87 56.69 0.89 48.38 0.91 41.68

0.95 0.85 77.46 0.92 67.23 0.93 58.98 0.95 51.29

0.99 0.94 87.78 0.96 81.61 0.97 75.40 0.98 68.90

35 0.50 0.34 26.28 0.57 22.48 0.62 19.62 0.65 17.27

0.90 0.78 67.78 0.88 53.35 0.90 44.74 0.92 37.76

0.95 0.87 77.62 0.93 64.72 0.94 55.24 0.95 46.72

0.99 0.95 88.13 0.97 80.88 0.98 73.48 0.98 64.82

50 0.50 0.36 25.81 0.58 23.59 0.63 19.95 0.66 17.36

0.90 0.80 67.88 0.89 53.29 0.91 44.84 0.92 37.40

0.95 0.89 78.11 0.93 63.92 0.95 55.21 0.96 46.53

0.99 0.96 88.44 0.97 80.24 0.98 72.70 0.99 64.44

20% 25 0.50 0.30 26.56 0.51 25.65 0.58 22.43 0.61 21.07

0.90 0.78 68.95 0.85 59.34 0.88 52.19 0.91 46.00

0.95 0.87 79.11 0.91 69.87 0.93 62.61 0.94 56.34

0.99 0.94 88.56 0.95 82.59 0.96 78.02 0.98 73.31

35 0.50 0.33 27.24 0.52 24.01 0.59 21.42 0.62 18.86

0.90 0.79 68.65 0.86 57.16 0.89 48.91 0.89 41.33

0.95 0.88 78.85 0.93 68.04 0.94 59.55 0.94 50.79

0.99 0.95 88.75 0.97 82.34 0.97 76.63 0.98 69.76

50 0.50 0.33 26.15 0.54 24.59 0.61 22.63 0.64 18.71

0.90 0.80 68.33 0.87 56.84 0.90 49.85 0.91 41.51

0.95 0.89 78.95 0.92 67.64 0.93 60.13 0.95 51.14

0.99 0.95 88.96 0.97 82.78 0.98 77.09 0.98 69.62

30% 25 0.50 0.30 25.43 0.49 26.62 0.55 24.36 0.60 23.07

0.90 0.77 68.80 0.85 62.54 0.87 56.39 0.90 50.77

0.95 0.85 78.61 0.91 72.52 0.93 67.22 0.94 60.83

0.99 0.93 87.53 0.95 84.44 0.97 81.47 0.97 77.00

35 0.50 0.31 26.20 0.50 25.32 0.56 23.34 0.61 20.84

0.90 0.78 68.67 0.85 60.16 0.88 23.34 0.89 46.10

0.95 0.86 78.84 0.92 70.83 0.94 64.10 0.95 56.43

0.99 0.94 87.82 0.96 84.13 0.97 79.68 0.98 74.27

50 0.50 0.33 26.03 0.51 25.26 0.57 22.55 0.63 20.42

0.90 0.80 68.12 0.86 59.37 0.88 52.59 0.91 45.58

0.95 0.87 78.27 0.92 70.30 0.93 63.51 0.95 56.08

0.99 0.94 87.56 0.96 83.90 0.97 79.63 0.98 74.33
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Clinical Center in Ljubljana. The data were originally studied by [15]. The data set
provides details of 972 patients between the ages of 40 and 80, of which 48% have
censored outcomes. This data set was studied in the literature, for example, see [31]
and [29]. Our proposed approach is used to identify structural changes in the data
set. The binary segmentation method by [30] is used to identify potential multiple
changes. The change point estimates are k̂ = {78, 184, 532, 842, 881, 962}. The 95%
confidence sets of the change point estimates are indicated by the horizontal red dashed
line in Fig. 7.

In comparison with [31], we obtain the following equation:

ŷi = (11.700 − 0.049agei − 0.343genderi ) I(1≤i≤78)

+ (11.129 − 0.042agei − 0.461genderi ) I(79≤i≤184)

Fig. 4 Failure times

Fig. 5 Failure times data with change-point estimate
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Fig. 6 95% confidence set of change point location

Fig. 7 a Confidence curve for change point estimate k̂ = 184, b Confidence curve for the subset (2 ≤ i ≤
183), the change point estimate k̂ = 78, c Confidence curve for the subset (185 ≤ i ≤ 972), the change
point estimate k̂ = 842, d Confidence curve for the subset (185 ≤ i ≤ 841), the change point estimate
k̂ = 532, e Confidence curve for the subset (843 ≤ i ≤ 972), the change point estimate k̂ = 881, and f
Confidence curve for the subset (882 ≤ i ≤ 972), the change point estimate k̂ = 962
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+ (11.697 − 0.062agei + 0.054genderi ) I(185≤i≤532)

+ (10.241 − 0.029agei − 0.120genderi ) I(533≤i≤842)

+ (10.738 − 0.045agei − 0.099genderi ) I(843≤i≤881)

+ (10.433 − 0.042agei0.215genderi ) I(882≤i≤962)

+ (6.473 + 0.010agei + 0.517genderi ) I(963≤i≤972)

However, [31]’s method considers randomly censored linear models without any
change point.

5 Conclusion

In this paper, we propose a change point detection procedure in Linear Failure Rate
distribution using the likelihood ratio test method in combining with the confidence
distribution to construct the confidence sets of change locations, instead of providing
point estimates only. Moreover, we consider the scenario of random censorship. Our
proposed framework can be generalized to any combination of covariate distributions.
We establish the asymptotic properties of the test statistic. Simulations are carried
out under various conditions with different censoring distributions to demonstrate
the advantages of the proposed method. Two real data applications are provided to
illustrate the advantage of the proposed method.
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