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Beijing Institute of Technology, Beijing, China

ABSTRACT
The mean residual life (MRL) function is one of the basic parameters of 
interest in survival analysis. In this paper, we develop three procedures 
based on modified versions of empirical likelihood (EL) to construct con-
fidence intervals of the MRL function with length-biased data. The asympto-
tic results corresponding to the procedures have been established. The 
proposed methods exhibit better finite sample performance over other 
existing procedures, especially in small sample sizes. Simulations are con-
ducted to compare coverage probabilities and the mean lengths of confi-
dence intervals under different scenarios for the proposed methods and 
some existing methods. Two real data applications are provided to illustrate 
the methods of constructing confidence intervals.

ARTICLE HISTORY 
Received 25 September 2021  
Accepted 19 May 2022 

KEYWORDS 
Mean residual life function; 
Length-biased data; 
confidence band; confidence 
interval; empirical likelihood

1. Introduction

There have been numerous research studies conducted to investigate the properties of the MRL 
function, which is widely used to model various life time data. A detailed reviews of the MRL functions 
can be found in Proschan and Serfling (1974), Crowley and Johnson (1982) and Guess and Proschan 
(1988). Many researchers have studied the theoretical properties of the MRL function. To name a few, 
Yang (1978) studied the MRL function on a fixed interval 0 � t � τ<1, and he showed that the 
estimator is strongly uniformly consistent on ½0; τ�. The Yang’s findings were generalized to Rþ ¼
½0;1� with appropriate metrics by Hall and Wellner (1979). Berger et al. (1988) studied 
a nonprametric procedure for comparing MRL functions based on two independent samples. 
A semiparametric estimation of proportional mean residual life model for the censored data proposed 
by Chen and Cheng (2005). Further, the MRL function has many useful applications. For instance, 
recently, From and Ratnasingam (2021) derived new bounds for moment generating functions of 
various life distributions using MRL functions.

In real-world situations, we often collect a biased or weighted sample whose distribution differs 
from the population of interest. Length-biased sampling is a common problem in sampling design. In 
particular, this is a special case of left truncation with the truncation variables independent and 
uniformly distributed on a well-defined interval and it commonly occurs in various fields, including 
survival analysis, renewal processes, epidemiology, econometrics, and physics. More specifically, 
length-biased sampling arises when the event has already happened before the recruitment time of 
the study. For instance, in observational studies, the subjects who have survived at or beyond the 
enrollment time can be observed. In this situation, the observed samples are not randomly selected 
from the population of interest but with probability proportional to their length. Examples of such 
data can be found in Asgharian et al. (2002), Addona and Wolfson (2006) and Shen et al. (2009). 
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Statistical inferences of length-biased data have drawn extensive considerations in the literature, see 
for example, Daniels (1942), In et al. (1969), Zelen and Feinleib (1969), Patil and Rao (1978), Simon 
(1980), and Wang (1996).

Much research has been conducted on the MRL function with length-biased sampling. For 
instance, Zhao and Qin (2006) derived the limiting distribution of the empirical likelihood (EL) 
ratio for MRL function for complete data. The technique was generalized by Zhao and Qin (2007) to 
censored survival data. Zhou and Jeong (2011) proposed EL-based ratio test to evaluate the equality of 
two mean residual life functions for the right censored data. A nonparametric method based on 
jackknife empirical likelihood through U � statistic to test the equality of two mean residual functions 
studied by Chen et al. (2017). Fakoor (2015) proposed a nonparametric estimator of the MRL function 
for length-biased data. Fakoor et al. (2018) developed the MRL function inference through EL in 
length-biased sampling. They constructed EL-based confidence intervals and estimated coverage 
probabilities (CP) and the mean lengths of confidence intervals for the MRL function and compared 
the results with the normal approximation (NA) method. Despite of its popularity, the EL-based 
method suffers from two fundamental drawbacks: (1) In order to solve EL function, the convex hull 
must have 0 as its interior point. Owen (2001) suggested that if the convex hull does not have zero as 
an interior point, the EL function could be assigned a value of � 1. However, this makes it difficult to 
find the maximum of the EL function, (2) EL method tends to suffer from an under-coverage problem, 
see Tsao (2013) for more details. Many methods have been proposed in the literature to mitigate these 
issues. For example, the adjusted empirical likelihood method (AEL) proposed by Chen et al. (2008) 
which affirms the existence of the solution in maximization problem and preserves the asymptotic 
optimality properties. To address the under-coverage problem for small sample sizes, Jing et al. (2017) 
proposed the transformed empirical likelihood (TEL). Recently, Stewart and Ning (2020) and Li et al. 
(2022) studied the transformed adjusted empirical likelihood (TAEL) which combines the advantages 
of AEL and TEL methods. In this paper, we propose three modified EL-based procedures to obtain 
confidence regions of the MRL function with length-biased data. We also show that under some 
regularity conditions, the limiting distribution of the modified EL-ratio for the MRL function is 
a standard chi-square distribution.

The rest of the paper is organized as follows. In section 2, we briefly describe fundamental 
properties of EL for the MRL function in length-biased sampling. The asymptotic properties of the 
proposed AEL, TEL, and TAEL methods are given in section 3. In section 4, we conduct simulations to 
study the mean lengths of the confidence intervals and coverage probabilities at various settings in the 
purpose of comparisons to other existing methods. In section 5, two real data applications are 
provided to illustrate the procedures of constructing confidence intervals. In section 6, some discus-
sions are provided.

2. Methodology

Let X be a real-valued random variable with an unknown distribution function (d.f.) Fð�Þ. Let 
Y1;Y2; . . . ;Yn be a random variable denote a biased sample observed from a distribution Gð�Þ. 
Then, the version of the biased sampling of Fð�Þ according to some known biasing (or weight) 
function wð�Þ is given as follows. 

GðtÞ ¼ 1
W

ðt

� 1

wðyÞdFðyÞ; t 2 R (1) 

where 

W ¼
ð

wðyÞdFðyÞ: (2) 
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The biased sampling problem is to estimate Fð�Þ from Gð�Þ on the basis of the random sample 
Y1;Y2; . . . ;Yn. If Fð�Þ is a d.f. on Rþ ¼ ½0;1Þ with a finite mean μ and let wðxÞ ¼ x; x � 0, then we have 

GðtÞ ¼ 1
μ

ðt

� 1

ydFðyÞ; t � 0: (3) 

This is the length-biased distribution corresponding to Fð�Þ. For more details, refer to Fakoor et al. 
(2018). The corresponding mean residual life function at time t is defined as 

MðtÞ ¼ EðX � tjX > tÞ ¼ 1
SðtÞ

ð1

t
SðxÞdx; (4) 

where SðxÞ ¼ 1 � FðxÞ is a survival function of X and t � 0 which represents the probability that 
a subject survives beyond time x. Fakoor et al. (2018) proposed the EL-based method for the MRL 
function, MðtÞ, to obtain confidence interval as below. For 1 � i � n at a fix time t, we can define the 
EL at M0ðtÞ, 

LðM0ðtÞÞ ¼
Pn

i¼1
logðnpiÞjpi � 0;

Pn

i¼1
pi ¼ 1;

Pn

i¼1
piViðM0ðtÞÞ ¼ 0

� �

; (5) 

where M0ðtÞ is the true value of MðtÞ at time t; and 

ViðtÞ ¼ tþM0ðtÞ
Yi
� 1

� �
IðYi � tÞ: (6) 

By using the Lagrange multiplier method, LðM0ðtÞÞ attains its maximum when 

pi ¼
1

nð1þλðtÞViðtÞÞ ; i ¼ 1; 2; . . . ; n (7) 

where λðtÞ is the Lagrange multiplier that solves the equation 

1
n
Pn

i¼1

ViðtÞ
nð1þλðtÞViðtÞÞ ¼ 0: (8) 

Note that that λðtÞ and ViðtÞ are functions of t. Thus, they can be evaluated at a fixed but arbitrary 
time, for example, t0, such that 0 � t0 < τ. However, for the simplicity of notations, we shall denote by 
λðtÞ and ViðtÞ instead of λðt0Þ and Viðt0Þ. We should point out that the solution of this equation exists 
whenever zero is an interior point of the convex hull f

Pn
i¼1 piViðM0ðtÞÞj

P
pi ¼ 1; pi � 0g. Now, the 

EL ratio for M0ðtÞ is given by 

RðM0ðtÞÞ ¼
Qn

i¼1
npi ¼

Qn

i¼1

1
1þλðtÞViðtÞ ; (9) 

and the associated empirical log-likelihood ratio is 

lðM0ðtÞÞ ¼ max
Pn

i¼1
logð1þ λðtÞViðtÞÞ: (10) 

Fakoor et al. (2018) showed that, under the condition of EðY � 2Þ<1, and for all t 2 ½0; τÞ the limiting 
distribution of � 2lðM0ðtÞÞ converges to χ2

1 in distribution. However, the original EL suffers from the 
low coverage probability, especially for small sample sizes, see, for example, Chen et al. (2008) and Jing 
et al. (2017). Next, we present three modified EL-based approaches to construct confidence regions of 
MðtÞ at a fixed time t for t 2 ½0; τÞ.
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3. Main results

3.1. Adjusted empirical likelihood for the MRL function

We adopted the adjusted empirical likelihood (AEL) by Chen et al. (2008) for the MRL function. We 
define �Vn ¼ ð1=nÞ

Pn
i¼1 ViðtÞ and Vnþ1ðtÞ ¼ � an �Vn; where an ¼ maxf1; 1

2 log ng according to the 
suggestion by Chen et al. (2008). Based on the ðnþ 1Þ observations, we define the adjusted empirical 
likelihood as 

L�ðM0ðtÞÞ ¼ max
Pnþ1

i¼1
logððnþ 1ÞpiÞ

�
�
�
�pi � 0;

Pnþ1

i¼1
pi ¼ 1;

Pnþ1

i¼1
piViðtÞ ¼ 0

� �

g: (11) 

Consequently, the adjusted empirical log-likelihood ratio is given by 

l�ðM0ðtÞÞ ¼ max
Pnþ1

i¼1
logð1þ λaðtÞViðtÞÞ: (12) 

Theorem 3.1. Assume that EðY � 2Þ<1. For all t 2 ½0; τ�, let l�ðM0ðtÞÞ be the adjusted log-empirical 
likelihood ratio function defined by (12) and an ¼ opðn2=3Þ. We have 

� 2l�ðM0ðtÞÞ ! χ2
1 (13) 

in distribution.

Thus, an asymptotic ð1 � αÞ100% confidence interval for MðtÞ at a fixed time t is given as follows 

CðtÞ ¼ fMðtÞ : � 2l�ðMðtÞÞ � χ2
1;αg; (14) 

where χ2
1;α is the upper α � quantile of the distribution of χ2

1.
Proof.
See Appendix A.

3.2. Transformed empirical likelihood for the MRL function

Besides the AEL by Chen et al. (2008), Jing et al. (2017) provided a simple transformation of the 
original EL (TEL) to improve the coverage probability. For a constant γ 2 ½0; 1�, we define 

ltðM0ðtÞ; γÞ ¼ lðM0ðtÞÞ �max 1 � lðM0ðtÞÞ
n ; 1 � γ

n o
; (15) 

and refer to ltðM0ðtÞ; γÞ as the truncated quadratic transformation of lðM0ðtÞÞ defined in (10). 
Following Jing et al. (2017), we set γ ¼ 1=2. Thus, the transformed empirical log-likelihood ratio 
can be defined as follows. 

ltðM0ðtÞÞ ¼ lt M0ðtÞ; γ ¼ 1
2

� �
¼ lðM0ðtÞÞ �max 1 � lðM0ðtÞÞ

n ; 1
2

n o
: (16) 

The corresponding transformed empirical log-likelihood ratio, denoted by ltðM0ðtÞÞ, is 

ltðM0ðtÞÞ ¼
lðM0ðtÞÞ 1 � lðM0ðtÞÞ

n

� �
if lðM0ðtÞÞ � n

2 ;

lðM0ðtÞÞ if lðM0ðtÞÞ> n
2 :

(

(17) 

Jing et al. (2017) pointed out that the TEL shares the same asymptotic properties with the EL. For more 
details readers are referred to Jing et al. (2017). 

Theorem 3.2. Assume that EðY � 2Þ<1; for all t 2 ½0; τ�; we have 
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� 2ltðM0ðtÞÞ ! χ2
1; (18) 

in distribution.

Thus, an asymptotic ð1 � αÞ100% confidence interval for MðtÞ at a fixed time t is given as follows 

CðtÞ ¼ fMðtÞ : � 2ltðMðtÞÞ � χ2
1;αg; (19) 

where χ2
1;α is the upper α � quantile of the distribution of χ2

1.
Proof.
See Appendix A.

3.3. Transformed adjusted empirical likelihood for the MRL function

Transformed adjusted empirical likelihood (TAEL) is a combination of AEL and TEL methods 
proposed by Stewart and Ning (2020). The TAEL method comprises the advantages of AEL and 
TEL. For a constant γ 2 ½0; 1�, we define 

l�t ðl�ðM0ðtÞÞ; γÞ ¼ l�ðM0ðtÞÞ �max 1 � l�ðM0ðtÞÞ
n ; 1 � γ

n o
: (20) 

where l�ð�Þ defined in (12). Thus, for γ ¼ 1=2, the transformed empirical log-likelihood ratio l�t ðM0ðtÞÞ
can be defined as, 

l�t l�ðM0ðtÞÞ; 1
2

� �
¼ l�ðM0ðtÞÞ �max 1 � l�ðM0ðtÞÞ

n ; 1
2

n o
: (21) 

More explicitly, 

l�t ðM0ðtÞÞ ¼
l�ðM0ðtÞÞ 1 � l�ðM0ðtÞÞ

n

� �
if l�ðM0ðtÞÞ � n

2 ;

l�ðM0ðtÞÞ
2 if l�ðM0ðtÞÞ � n

2 :

(

(22) 

Theorem 3.3. Assume that EðY � 2Þ<1; for all t 2 ½0; τ�; we have 

� 2l�t ðM0ðtÞÞ ! χ2
1 

in distribution.
Thus, an asymptotic ð1 � αÞ100% confidence interval for MðtÞ at a fixed time t is given as follows 

CðtÞ ¼ fMðtÞ : � 2l�t ðMðtÞÞ � χ2
1;αg; (23) 

where χ2
1;α is the upper α � quantile of the distribution of χ2

1. 

Proof.

See Appendix A.

4. Simulation study

In this section, we conduct simulation studies to evaluate the performance of the proposed AEL, TEL, 
and TAEL-based confidence regions for the MRL function likelihood ratio in comparison with the EL 
and NA-based confidence regions under various sample sizes of length-biased data in terms of 
coverage probabilities (CP) and mean lengths (ML) of the confidence intervals. The CP is the 
proportion of the times that the confidence regions contain the true value of parameter among N 
simulation runs. In order to make fair comparisons, we adopt the same settings used in Fakoor et al. 
(2018). First, we obtain an i.i.d sample of Y1;Y2; . . . ;Yn with the proposed length-biased distributions. 
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We choose n ¼ 15; 30, and 50 representing small and moderate sample sizes. The number of simula-
tion replications is set to be N ¼ 5000. We consider the nominal significance level α ¼ 0:05. The 
following MRL function of the respective target populations are considered: (1) Uniform(1, 4) and (2) 
Gamma(4, 2).

Tables 1 and 2 summarize the estimated CP of confidence intervals, and the mean lengths of the 
confidence intervals from different methods for the MRL of Uniform(1, 4) and Gamma(4, 2) dis-
tributions, respectively. We observe that the AEL, TEL, and TAEL-based confidence intervals have 
higher coverage probabilities than the EL and NA-based confidence regions. In particular, AEL, TEL, 
and TAEL have higher coverage accuracy for small samples, especially for n ¼ 15 and 30. In particular, 
the coverage probability based on the TAEL method are much closer to the nominal level 0:95, and in 
some cases it’s actually quite conservative. The confidence intervals based on NA usually perform the 
worst among the entire methods in general, although in some cases they are slightly better than the EL. 
It is also worth noting that the NA approach never achieves the nominal stated coverage. Further, it 
can be seen from Tables 1–2 that the TAEL-based method leads to an over-coverage problem slightly 
in some cases. The TEL method also provides significantly closer to nominal level, especially at small 
values of n. In these circumstances, the AEL or TEL methods are recommended. Our simulation 
results indicate that the CP tends to increase when the sample size increases, as would be expected. In 
addition, the mean lengths of the confidence intervals for the AEL, TEL, and TAEL are slightly longer 
than those corresponding to the EL and NA-based methods, but within an acceptable range. Note that 
as the sample size n increases, the mean length decreases for all five methods. Figures 1 and 3 
demonstrate the coverage probabilities for all five methods for the MRL function based on length- 
biased observations of Uniform(1, 4) and Gamma(4, 2), respectively. Figures 2 and 4 illustrate the 95% 
pointwise confidence intervals for all five methods for the MRL function based on length-biased 

Figure 1. Coverage probabilities of the NA, EL, AEL, TEL, and TAEL methods with a range of t values for various sample sizes n ¼
f15; 30; 50g for the MRL of Uniform(1, 4).
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Figure 2. The point estimates (closed circles) and 95% pointwise confidence band (shaded area) of the NA, EL, AEL, TEL, and TAEL 
methods with a range of t values for various sample sizes n ¼ f15; 30; 50g for the MRL of Uniform(1, 4).

Figure 3. Coverage probabilities of the NA, EL, AEL, TEL, and TAEL methods with a range of t values for various sample sizes n ¼
f15; 30; 50g for the MRL of Gamma(4, 2).
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observations of Uniform(1, 4) and Gamma(4, 2), respectively. In particular, the shaded area depicts 
a 95% pointwise confidence band and black dashed line with closed circles in each panel represents the 
point estimates of the MRL at a given time point (t).

5. Applications

In this section, we apply the proposed methods to demonstrate the effectiveness of AEL, TEL, and 
TAEL methods by constructing confidence intervals for two real datasets as well as comparing to EL 
and NA methods. They are “Stanford heart transplant data” and “Medical Follow up Study data”. 
A complete description of these data sets can be found in Crowley and Hu (1977) and Woolson (1981) 
respectively. In particular, length-biased sampling occurred in these datasets because only those 
individuals who were still alive during the study period was observed. We have also verified the 
stationary assumption for the sub-sample at selected ages by the method given in Asgharian et al. 
(2006).

5.1. Stanford heart transplant data

Our first data is survival time in days of Stanford heart transplant in Crowley and Hu (1977). The data 
set can be obtained from the R package “survival”. We evaluate only 69 (see the appendix for 
instructions on how to obtain the patient’s data) patients who underwent a heart transplant surgery. 
The aim of this application is to demonstrate how effectively the proposed methods perform when 
sample sizes are moderate to large. Table 3 summarizes a 95% confidence interval and the length of the 
confidence interval for the MRL function based on the length-biased sub-sample selected at various 
time t, including 0.2656, 1.7656, 3.2656, 4.7656, and 6.2656. We have also sketched the pointwise 95% 
EL-types confidence intervals and 95% EL-types confidence bands for the MRL function in Figures 5 

Figure 4. The point estimates (closed circles) and 95% pointwise confidence band (shaded area) of the NA, EL, AEL, TEL, and TAEL 
methods with a range of t values for various sample sizes n ¼ f15; 30; 50g for the MRL of Gamma(4, 2).
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and 6 respectively. The red color dashed line with closed circles in each panel represents the point 
estimates of the MRL function at given time t. The shaded area in Figure 6 depicts a 95% pointwise 
confidence band obtained from various EL-type methods and NA methods. It can be clearly seen that 
the MRL function steadily decreases when the time increases. We also observe that the lengths of the 
confidence intervals for all methods increase over time. We notice that the TAEL and TEL methods 
provide longer intervals than those based on NA, EL, and AEL methods. According to our simulations 
studies, the TAEL and TEL methods provide better CP under various settings comparing to EL and 
NA methods.

5.2. Medical follow up study

Our second data comes from the Medical Follow-up Study. The survival-time data were obtained 
from a much larger sample of 525 psychiatric inpatients who were first admitted to the University of 
Iowa Hospitals during the years 1935–1948. However, for the purpose of this analysis, we only 
considered the survival and demographic data for 26 psychiatric patients. Our goal is to show how 
well the proposed methods work for constructing confidence intervals for the MRL function when 
sample sizes are small. The data summarized in Table 1 in Woolson (1981). We have applied the 
proposed modified EL-based methods in order to estimate the MRL function. The 95% confidence 
intervals for the MRL function based on the length-biased sub-sample are calculated at selected ages 
35, 37, 43, 47, 49, and 55 are presented in Table 4. Further, a 95% pointwise confidence intervals and 
confidence band are graphed in Figures 7 and 8 respectively. The MRL function steadily decreases 
when the age increases. We notice that as the sample size goes down the NA method does not 
present a valid result. The NA approach failed to produce the confidence interval for large values of 
t, such as t ¼ 47; 49, and 55, although the TEL and TAEL methods did. We also observe that the EL 

Figure 5. The point estimates (closed circles) and 95% pointwise confidence intervals of the MRL function by various methods.
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Figure 6. The point estimates (closed circles) and 95% pointwise confidence band (shaded area) of the MRL function.

Table 1. Estimated coverage probabilities (CP) of confidence regions and the mean lengths (ML) of confidence interval for the MRL of 
Uniform(1, 4) with the nominal significance level α ¼ 0:05.

NA EL AEL TEL TAEL

n t CP ML CP ML CP ML CP ML CP ML

15 0.2 0.796 1.258 0.772 1.141 0.806 1.200 0.893 1.438 0.930 1.552
0.4 0.828 1.174 0.818 1.088 0.842 1.148 0.932 1.427 0.954 1.515
0.6 0.863 1.094 0.862 1.030 0.885 1.088 0.958 1.382 0.960 1.415
0.8 0.879 1.009 0.885 0.960 0.908 1.015 0.963 1.304 0.960 1.332
1.0 0.887 0.945 0.898 0.904 0.911 0.956 0.959 1.233 0.965 1.298
1.2 0.887 0.881 0.897 0.846 0.911 0.896 0.964 1.157 0.970 1.219

30 6 0.841 0.826 0.830 0.809 0.856 0.858 0.865 0.875 0.897 0.940
9 0.915 0.726 0.923 0.716 0.940 0.759 0.944 0.775 0.959 0.833
2 0.926 0.647 0.938 0.638 0.949 0.678 0.953 0.691 0.965 0.744
1.5 0.927 0.579 0.940 0.571 0.954 0.606 0.957 0.619 0.969 0.666
1.8 0.922 0.517 0.935 0.510 0.947 0.541 0.951 0.552 0.966 0.594
2.1 0.928 0.464 0.942 0.456 0.954 0.484 0.958 0.494 0.972 0.531

50 1.2 0.931 0.507 0.940 0.505 0.948 0.518 0.951 0.527 0.963 0.556
1.5 0.939 0.454 0.949 0.451 0.954 0.463 0.958 0.471 0.966 0.498
1.8 0.932 0.407 0.940 0.403 0.947 0.414 0.951 0.421 0.963 0.445
2.1 0.936 0.364 0.943 0.360 0.947 0.369 0.951 0.376 0.962 0.397
2.4 0.942 0.323 0.950 0.319 0.955 0.327 0.958 0.333 0.966 0.352
2.7 0.933 0.283 0.943 0.278 0.949 0.285 0.952 0.290 0.963 0.306
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Figure 7. The point estimates (closed circles) and 95% pointwise confidence intervals of the MRL function by various methods.

EL AEL TEL TAEL

35 40 45 50 35 40 45 50 35 40 45 50 35 40 45 50

4

6

8

E
st

im
at

ed
 M

R
L 

F
un

ct
io

n 
(a

t t
im

e 
t)

Age at Admission (t)

Figure 8. The point estimates (closed circles) and 95% pointwise confidence band (shaded area) of the MRL function.
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Table 2. Estimated coverage probabilities (CP) of confidence regions and the mean lengths (ML) of confidence interval for the MRL of 
Gamma(4, 2) with the nominal significance level α ¼ 0:05.

NA EL AEL TEL TAEL

n t CP ML CP ML CP ML CP ML CP ML

15 0.2 0.894 1.016 0.879 0.976 0.898 1.035 0.951 1.351 0.957 1.392
0.4 0.903 1.015 0.893 0.978 0.908 1.038 0.961 1.362 0.966 1.399
0.6 0.912 0.979 0.904 0.950 0.923 1.010 0.969 1.336 0.972 1.369
0.8 0.913 0.943 0.908 0.920 0.925 0.977 0.972 1.298 0.975 1.331
1 0.914 0.913 0.921 0.892 0.935 0.949 0.977 1.264 0.980 1.297
1.2 0.919 0.890 0.919 0.871 0.935 0.926 0.980 1.237 0.982 1.269

30 0.6 0.930 0.710 0.935 0.708 0.940 0.726 0.952 0.768 0.954 0.780
0.9 0.934 0.664 0.934 0.660 0.940 0.677 0.953 0.717 0.955 0.728
1.2 0.938 0.635 0.944 0.631 0.951 0.647 0.963 0.685 0.965 0.696
1.5 0.941 0.623 0.944 0.620 0.952 0.636 0.964 0.674 0.965 0.685
1.8 0.936 0.642 0.942 0.637 0.950 0.653 0.960 0.692 0.964 0.704
2.1 0.931 0.674 0.935 0.665 0.941 0.683 0.953 0.724 0.956 0.735

50 1.2 0.939 0.491 0.942 0.490 0.948 0.503 0.952 0.512 0.955 0.519
1.5 0.940 0.485 0.944 0.484 0.951 0.497 0.957 0.506 0.959 0.514
1.8 0.936 0.494 0.941 0.494 0.948 0.507 0.952 0.516 0.955 0.524
2.1 0.941 0.521 0.950 0.519 0.954 0.533 0.958 0.543 0.959 0.551
2.4 0.934 0.561 0.942 0.557 0.946 0.572 0.949 0.583 0.953 0.592
2.7 0.925 0.621 0.931 0.612 0.940 0.629 0.943 0.641 0.946 0.650

Table 3. A 95% confidence intervals for MRL function for Stanford heart transplant data.

Time (t) MRL Interval EL AEL TEL TAEL NA

0.2656 3.3401 Lower 2.7375 2.7342 2.7217 2.7181 2.7119
Upper 3.8503 3.8541 3.8685 3.8728 3.8357
Length 1.1128 1.1199 1.1468 1.1547 1.1238

1.7656 2.4018 Lower 1.9023 1.8996 1.8895 1.8865 1.8766
Upper 2.7975 2.8006 2.8123 2.8157 2.7921
Length 0.8951 0.9009 0.9228 0.9292 0.9155

3.2656 2.0073 Lower 1.9029 1.9001 1.8895 1.8864 1.8542
Upper 2.8795 2.8831 2.8970 2.9011 2.8641
Length 0.9766 0.9830 1.0075 1.0147 1.0099

4.7656 1.8072 Lower 1.3837 1.3811 1.3712 1.3683 1.3811
Upper 2.3208 2.3242 2.3373 2.3411 2.3218
Length 0.9370 0.9431 0.9661 0.9728 0.9406

6.2656 1.6890 Lower 0.7001 0.6955 0.6781 0.6731 0.6772
Upper 3.1686 3.1789 3.2180 3.2293 3.1242
Length 2.4684 2.4834 2.5399 2.5563 2.4470

Table 4. A 95% confidence intervals for MRL function for medical follow up study data.

Time (t) MRL Interval EL AEL TEL TAEL NA

35 8.6958 Lower 5.8036 5.7899 5.5835 5.5642 5.6217
Upper 10.7224 10.7418 1.0389 11.0672 10.4821
Length 4.9188 4.9519 5.4555 5.5031 4.8604

37 8.1988 Lower 4.6116 4.5986 4.4055 4.3876 4.0723
Upper 10.3051 0.3332 10.7663 0.8080 9.7114
Length 5.6936 5.7345 6.3607 6.4204 5.6392

43 7.0624 Lower 4.0183 3.9970 3.6848 3.6563 3.0143
Upper 13.6223 13.6634 14.2876 14.3466 13.1226
Length 9.6040 9.6663 10.6028 10.6903 10.1083

47 6.5162 Lower 2.7348 2.7212 2.5267 2.5093 –
Upper 9.7381 9.7632 10.1338 10.1678 –
Length 7.0034 7.0420 7.6071 7.6585 –

49 6.2884 Lower 1.8795 1.8665 1.6770 1.6599 –
Upper 8.2382 8.2607 8.5933 8.6238 –
Length 6.3586 6.3942 6.9163 6.9639 –

55 5.7384 Lower 7.498 5.7479 5.7226 5.7205 –
Upper 7.4176 7.4221 7.4849 7.4903 –
Length 1.6678 1.6741 1.7623 1.7699 –
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and AEL methods provide approximately the same length. The TAEL method provides the longest 
interval length while the EL and NA methods provide the shortest interval length. Therefore, we 
suggest the AEL, TEL, and TAEL methods are the better choices for the construction of confidence 
intervals since they produce better coverage probability at all time points (t) through the 
simulations.

6. Conclusion

In this article, we proposed modified empirical likelihood methods including the adjusted empirical 
likelihood (AEL), the transformed empirical likelihood (TEL), and the transformed adjusted empirical 
likelihood (TAEL) on constructing confidence intervals for the mean residual life function in length-biased 
sampling. The asymptotic distributions of the MRL function based on the AEL, TEL, and TAEL are 
derived. Simulations show that the proposed AEL and TEL methods improve the coverage probability 
comparing to the EL and the NA methods, especially for small sample sizes. The TAEL method provides 
the highest coverage probabilities, however, it occasionally suffer from an over coverage problem. Two real 
data applications are provided to illustrate the advantage of proposed methods. Based on the real-life 
applications, in general, the proposed length-biased versions of AEL, TEL, and TAEL perform better than 
the EL and NA due to the advantages of the nonparametric property and the existence of the solutions of 
the optimization procedure, especially for small sample sizes. From the simulations, we observe that, TAEL 
performs slightly better than AEL and TEL when the sample size is relatively small in terms of coverage 
probabilities while paying the price of producing slightly longer confidence intervals. As the sample size 
increases to moderate sample sizes, the performances of the three methods are comparable at different 
time points although TAEL provides slightly more conservative confidence intervals than the AEL and 
TEL. When in the scenarios of large sample sizes, three methods provide similar coverage probabilities and 
similar lengths of the confidence intervals. Therefore, in practical situations, TAEL is recommended when 
sample sizes are relatively small, AEL and TEL are recommended for moderate sample sizes as well as 
TAEL being an optional choice, and all three methods can be considered when the sample sizes are large.
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Appendix A. Proofs of Theorems

Proof. Theorem 3.1
The proof of this theorem is similar to Theorem 1 given in Chen et al. (2008). Let λðtÞ be the solution to 

Pnþ1

i¼1

ViðtÞ
1þλaðtÞViðtÞ ¼ 0: (24) 

We first show that λaðtÞ ¼ Opðn� 1=2Þ. According to Lemma 1 given Fakoor et al. (2018), since EðV2
1ðtÞÞ<1, by using 

Lemma 3 of Owen (1990), we have that V� ¼ max1�i�n Vik k ¼ opðn1=2Þ and �Vn ¼ Opðn� 1=2Þ. Let ρ ¼ λaðtÞk k and 
λ̂aðtÞ ¼ λaðtÞ=ρ. Multiplying λ̂aðtÞ=n to both sides gives, 

0 ¼
λ̂

a
ðtÞ
n
Pnþ1

i¼1

ViðtÞ
ð1þλaðtÞViðtÞÞ

¼
λ̂

a
ðtÞ
n
Pnþ1

i¼1
ViðtÞ � ρ

Pnþ1

i¼1

ðλ̂
a
ðtÞViðtÞÞ

2

ð1þρλ̂
a
ðtÞViðtÞÞ

� λ̂
a
ðtÞ�Vnð1 � an=nÞ � ρ

nð1þρV�ðtÞÞ
Pn

i¼1
ðλ̂

a
ðtÞViðtÞÞ

2

¼ λ̂
a
ðtÞ�Vn �

ρ
nð1þρV�ðtÞÞ

Pn

i¼1
ðλ̂

a
ðtÞViðtÞÞ

2
þ Opðn� 3=2anÞ:

(25) 

The inequality above is valid because the ðnþ 1Þth term in the second summation is non-negative. Following Chen et al. 
(2008), for any given ε> 0, 

1
n
Xn

i¼1
ðλaðtÞViðtÞÞ2 � 1 � : 2 (26) 

Therefore, as long as an ¼ opðnÞ, so (25) implies that, 

ρ
ð1þ ρV�ðtÞÞ

� λ̂aðtÞ
�VnðtÞ
ð1� 2Þ

¼ Opðn� 1=2Þ: (27) 

Thus, we get ρ ¼ Opðn� 1=2Þ and hence λaðtÞ ¼ Opðn� 1=2Þ. Now consider, 

0 ¼ 1
n
Pnþ1

i¼1

ViðtÞ
1þλaðtÞViðtÞ

¼ �VnðtÞ � λaðtÞV̂nðtÞ þ opðn� 1=2Þ:

(28) 

where V̂n ¼ ð1=nÞ
Pn

i¼1 ViðtÞ2. Hence, when n!1; λaðtÞ ¼ V̂� 1
n

�Vn þ opðn� 1=2Þ. Now, we expand l�ðM0ðtÞÞ as follows 

l�ðM0ðtÞÞ ¼
Pnþ1

i¼1
log 1þ λaðtÞViðtÞð Þ

¼
Pnþ1

i¼1
λaðtÞViðtÞ � ðλ

aðtÞViðtÞÞ2

2

n o
þ opð1Þ:

(29) 

Substituting the expansion of λa, we get that 

� 2l�ðM0ðtÞÞ ¼ nV̂ � 1

n
�V2

n þ opð1Þ

� !
d χ2

1:
(30) 

This completes the proof.
Proof. Theorem 3.2
We consider the same arguments used in Jing et al. (2017). We will look at four criteria separately.
• (C1) 0 � ltðM0ðtÞÞ � lðM0ðtÞÞ;
• (C2) ltðM0ðtÞÞ is a monotonically increasing function of lðM0ðtÞÞ;
• (C3) ltðM0ðt0ÞÞ ¼ lðM0ðt0ÞÞ þ opð1Þ;
• (C4) For any τ1 2 ½0;þ1Þ the level-τ1 contour of ltðM0ðtÞÞ, fM0ðtÞ : ltðM0ðtÞÞ ¼ τ1g is the same in shape as some 

level-τ2 contour of fM0ðtÞ : ltðM0ðtÞÞ ¼ τ2g; and ltðM0ð~tÞÞ � ltðM0ðtÞÞ for t�~t.
We evaluate criteria (C1) through (C4) given below.
• (C1) We can easily see that from the original empirical log-likelihood lðM0ðtÞÞð� 0Þ. This implies that 
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0< maxf1 � lðM0ðtÞÞ=n; 1=2g � 1: (31) 

Hence, 0 � ltðM0ðtÞÞ � lðM0ðtÞÞ.
• (C2) For lðM0ðtÞÞ 2 ½0; n=2�, we have ltðM0ðtÞÞ ¼ lðM0ðtÞÞ �maxf1 � lðM0ðtÞÞ=n; 1=2g. Specifically, ltðM0ðtÞÞ is 

a strictly monotonically increasing function of lðM0ðtÞÞ over the interval ½0; n=2�. Thus, for lðM0ðtÞÞ> n=2, we have 
ltðM0ðtÞÞ ¼ lðM0ðtÞÞ=2. This is also a strictly monotonically increasing function of lðM0ðtÞÞ. Therefore, ltðM0ðtÞÞ is non- 
negative, continuous, and strictly monotonically increasing over lðM0ðtÞÞ 2 ½0;þ1�.

• (C3) Fakoor et al. (2018) showed that the limiting distribution of � 2lðM0ðt0ÞÞ is χ2ð1Þ, distribution, we have that 
lðM0ðt0ÞÞ ¼ Opð1Þ. Consequently, we have lðM0ðt0ÞÞ � n=2 with probability approaching to 1. Thus, 
ltðM0ðt0ÞÞ ¼ lðM0ðt0ÞÞ �maxf1 � lðM0ðt0ÞÞ=n; 1=2g. Using this fact and that lðM0ðt0ÞÞ ¼ Opð1Þ give us (C3).

• (C4) For a level-τ1 contour of the transformed empirical log-likelihood ratio fM0ðtÞ : ltðM0ðtÞÞ ¼ τ1g, as ltðM0ðtÞÞ is 
a strictly monotonically increasing function of lðM0ðtÞÞ, let τ2 ¼ l� 1

t ðτ1Þ, then 
fM0ðtÞ : ltðM0ðtÞÞ ¼ τ1g ¼ fM0ðtÞ : lðM0ðtÞÞ ¼ τ2g. Further, as lðM0ðtÞÞ typically has a unique minimum at ~M0ðtÞ, 
the second part of (C4) also follows from the monotonicity of ltðM0ðtÞÞ.

This completes the proof.
Proof. Theorem 3.3
In order to prove Theorem 3.3 we will follow the same strategy used in Theorem 3.2. Thus, details are omitted to 

conserve space.

Appendix B. Applications

library(survival)
data(heart, package = “survival”)
heart_yes = heart[heart$transplant = = 1,]
head(heart_yes)
n = length(heart_yes$age)
n
>[1] 69
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