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Abstract
The Lorenz curve portrays income distribution inequality. In this article, we develop 
three modified empirical likelihood (EL) approaches, including adjusted empirical 
likelihood, transformed empirical likelihood, and transformed adjusted empirical 
likelihood, to construct confidence intervals for the generalized Lorenz ordinate. 
We demonstrate that the limiting distribution of the modified EL ratio statistics for 
the generalized Lorenz ordinate follows scaled Chi-Squared distributions with one 
degree of freedom. We compare the coverage probabilities and mean lengths of con-
fidence intervals of the proposed methods with the traditional EL method through 
simulations under various scenarios. Finally, we illustrate the proposed methods 
using real data to construct confidence intervals.

Keywords Generalized Lorenz curve · Empirical likelihood · Modified empirical 
likelihood · Confidence intervals · Coverage probability

1 Introduction

The Lorenz curve developed by American economist Lorenz (Lorenz 1905) is a 
graphical representation used to describe income and wealth inequality. A Lorenz 
curve with perfect equality follows a diagonal line (45◦ angle) in which the income 
percentage is always proportional to the population percentage; however, in the 
real world, the Lorenz curve falls below this line. As the actual income distribution 
is rarely known, the distribution is typically estimated from income data. Several 
researchers have made contributions to Lorenz curves analysis, for example, Sen 
(1973), Jakobsson (1976), Goldie (1977), and Marshall and Olkin (1979). The full 
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joint variance-covariance structure for the Lorenz curve ordinates was developed by 
Beach and Davidson (1983). John et al. (1989) proposed new results on generalized 
Lorenz ordinate analysis that are relevant for proving second-degree stochastic dom-
inance. Allen (1990), Lambert (2001), and Mosler and Koshevov (2007) have made 
recent advances, with their findings leading to a wide range of applications, par-
ticularly in reliability theory. Ryu and Slottje (1996) proposed an exponential poly-
nomial expansion and a Bernstein polynomial expansion as two flexible functional 
form approaches for approximating Lorenz curves. Hasegawa and Kozumi (2003) 
proposed a Bayesian non-parametric analysis approach with the Dirichlet process 
prior to Lorenz curve estimation with contaminated data. In particular, their method 
allows for heteroscedasticity in individual incomes. Further, the Lorenz curve has 
been used by several researchers to analyze physician distributions. For example, 
Chang and Halfon (1997) examined variations in the distribution of pediatricians 
among the states between 1982 and 1992 using Lorenz curves and Gini indices. 
Kobayashi and Takaki (1992) used the Lorenz curve and the Gini coefficient to 
study the disparity in physician distribution in Japan.

Empirical likelihood (EL) is a nonparametric method introduced by Owen (2001), 
an alternative to the standard parametric likelihood that inherits many alluring fea-
tures such as its extension of Wilks’ theorem, asymmetric confidence interval, better 
coverage for small sample sizes, and so on. Many researchers have studied EL for 
the Lorenz curve. For instance, Belinga-Hall (2007) and Yang et al. (2012) devel-
oped plug-in empirical likelihood-based inferences to construct confidence intervals 
for the generalized Lorenz curve. Qin et  al. (2013) studied EL-based confidence 
interval for the Lorenz curve under the simple random sampling and the stratified 
random sampling designs. Shi et al. (2019) proposed new nonparametric confidence 
intervals using the influence function-based empirical likelihood method for the 
Lorenz curve and showed that the limiting distributions of the empirical log-likeli-
hood ratio statistics for the Lorenz ordinates were standard chi-square distributions. 
Luo and Qin (2019) suggested a kernel smoothing estimator for the Lorenz curve 
and developed a smoothed jackknife empirical likelihood approach for constructing 
confidence intervals of Lorenz ordinates.

Despite being widely used, the EL-based approach has two major drawbacks: (1) 
the convex hull must have vector zero as its interior point in order to solve the pro-
file empirical likelihood problem. According to Owen (2001), the empirical likelihood 
function should be set to −∞ if the convex hull does not have zero as an interior point. 
However, Chen et al. (2008), pointed out that this makes it difficult to find the maxi-
mum of the EL function. (2) The EL technique frequently experiences under-coverage 
problems, see (Tsao 2013) for more details. To address these problems, numerous strat-
egies have been proposed in the literature. Chen et al. (2008) proposed adjusted empiri-
cal likelihood method (AEL), for example, confirms the existence of a solution in the 
maximization problem while preserving asymptotic optimality properties. Further, Jing 
et al. (2017) suggested the transformed empirical likelihood to tackle the under-cov-
erage problem for small sample sizes (TEL). Stewart and Ning (2020) proposed the 
transformed adjusted empirical likelihood (TAEL), a strategy that combines the AEL 
and TEL approaches. The AEL, TEL, and TAEL approaches are proven to be effec-
tive in many applications, for example, Li et al. (2022) investigated modified EL-based 
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confidence intervals for quantile regression models with longitudinal data. Ratnas-
ingam and Ning (2022) studied all three modified versions of EL procedures to con-
struct confidence intervals of the mean residual life function with length-biased data.

In this research, we develop three modified EL-based inference procedures to con-
struct confidence intervals for the generalized Lorenz curve. These modified EL meth-
ods aim to address the shortcomings of traditional EL, including the issue of under-cov-
erage, while also ensuring the existence of a solution for the maximization procedure. 
To the best of our knowledge, this is the first study to investigate AEL, TEL, and TAEL 
methods for constructing confidence intervals for the generalized Lorenz ordinate.

The remainder of this paper is organized as follows. In Sect. 2, we briefly describe 
the fundamental properties of EL for the generalized Lorenz curve and provide the 
methodology of AEL, TEL, and TAEL for the generalized Lorenz curve. In Sect. 3, 
we conduct an extensive simulation study to compare the finite sample performances 
of the proposed confidence intervals for the generalized Lorenz ordinates. In Sect. 4, 
we use an income dataset to illustrate the proposed intervals. In Sect. 5, we discuss our 
results and draw conclusions. The simulations are included in the Appendix.

2  Empirical likelihood based methods

2.1  Empirical likelihood

Let X be a random variable with cumulative distribution function (CDF) denoted by 
F(x) with finite support. For instance, F(⋅) denotes the CDF of income or wealth dis-
tribution. Following (Gastwirth 1971), a general definition of the Lorenz curve is pro-
vided below.

where � denotes the mean of F, and �t = F−1(t) = inf{x ∶ F(x) ≥ t} is the t-
th quantile of F. For a fixed t ∈ [0, 1] , the Lorenz ordinate �(t) is the ratio of the 
mean income of the lowest t-th fraction of households and the mean income of total 
households. The generalized Lorenz curve is defined as follows.

Because the income distribution F(x) is rarely known in practice, the Lorenz curve 
is typically estimated from income data. Hence, the empirical estimator for �(t) is 
defined as

(1)�(t) =
1

� ∫
�t

0

xdF(x), t ∈ [0, 1]

(2)�(t) = ∫
�t

0

xdF(x), t ∈ [0, 1]

(3)�̂(t) =
1

�̂ ∫
�̂t

0

xdF̂n(x), t ∈ [0, 1]
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where F̂n(x) is the empirical distribution function of the Xi’s, �̂  is the sample mean, 
�̂t is the t-th sample quantile of the Xi’s. From the definition of the generalized Lor-
enz curve, we observe that

Therefore, the empirical likelihood of �(t) can be expressed as

where p = (p1, p2,… , pn) is a probability vector satisfying 
∑n

i=1
pi = 1 and p ≥ 0 for 

all i, and Wi(t) = XiI(Xi ≤ �t) − �(t), i = 1, 2,… , n . It can be seen that Wi(t) in (4) 
depends on the unknown t-quantile �t . As a result, the generalized Lorenz ordinate 
�(t) is the mean of the random variable X truncated at �t . Using sample data, the 
empirical likelihood for �(t) as follows:

where Ŵi(t) = XiI(Xi ≤ �̂t) − �(t), i = 1, 2,… , n . When the vector p = (p1, p2,… , pn) is contained 
within the convex hull defined by {X1I(X1 ≤ �̂t),X2I(X2 ≤ �̂t),… ,XnI(Xn ≤ �̂t)}, 
Eq. (5) attains its unique maximum value. By applying the Lagrange multiplier method, 
we can determine, L(�(t)) as follows.

where � is the solution to

Note that 
∏n

i=1
pi , subject to 

∑n

i=1
pi = 1 , attains its maximum n−n at pi = n−1 . Thus, 

the EL ratio for �(t) is given as

Hence, the profile empirical log-likelihood ratio for �(t) is

E[XI(X ≤ �t)] − �(t) = 0.

(4)L∗(�(t)) = sup
p

{ n∏
i=1

pi ∶

n∑
i=1

pi = 1,

n∑
i=1

piWi(t) = 0

}
,

(5)L(�(t)) = sup
p

{ n∏
i=1

pi ∶

n∑
i=1

pi = 1,

n∑
i=1

piŴi(t) = 0

}
,

pi =
1

n

{
1 + �(t)Ŵi(t)

}−1

, i = 1,… , n.

1

n

n∑
i=1

Ŵi(t)

1 + �(t)Ŵi(t)
= 0.

(6)R(�(t)) =

n∏
i=1

npi =

n∏
i=1

{
1 + �(t)Ŵi(t)

}−1
.

(7)�(�(t)) = −2 logR(�(t)) = 2

n∑
i=1

log
{
1 + �(t)Ŵi(t)

}
.
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Theorem 2.1 If E(X2) < ∞ and �(t0) = E[XI(X ≤ �t0
)] for any given t = t0 ∈ (0, 1) 

then the limiting distribution of l(�(t0)) is a scaled chi-square distribution with one 
degree of freedom,

where �2
p
= Var

(
X I(X ≤ �t)

)
 and �2

v
= Var

(
(X − �t)I(X ≤ �t)

)
.

Although the scale constant 
(�2

p

�2
v

)
 is unknown, it can be consistently estimated 

by using the following formula.

Thus, an asymptotic (1 − �)100% confidence interval for generalized Lorenz ordi-
nate, �(t) at a fixed time t is given as follows

where �2
1,�

 is the upper �-quantile of the distribution of �2
1
 . For more details, we 

refer to Yang et al. (2012). As previously stated, the original EL method experiences 
low coverage probability, particularly for small sample sizes, for example, Chen 
et al. (2008) and Jing et al. (2017). Next, we describe the technical details of three 
modified EL-based methods for constructing confidence intervals. These methods 
are called AEL, TEL, and TAEL, and they are used for constructing confidence 
intervals for the generalized Lorenz ordinate �(t) , at a fixed time t for t ∈ (0, 1).

2.2  Adjusted Empirical Likelihood for Generalized Lorenz Ordinate

Chen et  al. (2008) proposed the adjusted empirical likelihood (AEL) in order 
to address the challenge of the non-existence of a solution in the Eq.  (7). We 
adopted the idea of the AEL method for generalized Lorenz ordinate. We 
define  Wn = (1∕n)

∑n

i=1
Wi(t)  . The pseudo value  Wn+1(t) = −anWn,  where 

an = max
{

1, 12 log n
} . Using the (n + 1) observations, we define the adjusted empirical 

likelihood as

Thus, the adjusted empirical log-likelihood ratio is given by

(8)
(�2

p

�2
v

)
�(�(t0)) ⟶ �2

1
, as n ⟶ ∞.

(9)

�2
p
=

1

n

n∑
i=1

(
Xi I(Xi ≤ �̂t) −

1

n

n∑
i=1

Xi I(Xi ≤ �̂t)

)2

, and

�2
v
=

1

n

n∑
i=1

(
(Xi − �̂t)I(Xi ≤ �̂t) −

1

n

n∑
i=1

(Xi − �̂t)I(Xi ≤ �̂t)

)2

.

(10)C(t) =

{
�(t) ∶

(�2
p

�2
v

)
�(�(t)) ≤ �2

1,�

}
,

(11)L∗(�(t)) = sup
p

{ n+1∏
i=1

pi
||||pi ≥ 0,

n+1∑
i=1

pi = 1,

n+1∑
i=1

piŴi(t) = 0

}
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Theorem  2.2 Assume that  E(X2) < ∞ . For all  t0 ∈ (0, 1) , let �∗(�(t0)) be the 
adjusted log-empirical likelihood ratio function defined by (12) and an = op(n

2∕3) . 
We have

in distribution.

Thus, an asymptotic (1 − �)100% confidence interval for �(t)  at a fixed time  t  is 
given as follows

where �2
1,�

 is the upper �-quantile of the distribution of �2
1
.

Proof Under the conditions of Theorem 2.1, Yang et al. (2012) showed that

Following similar arguments as in the proof of Theorem  3.1 in Ratnasingam and 
Ning (2022) we have

Using (15), A1 and A2, we have

(12)�
∗(�(t)) = 2

n+1∑
i=1

log
(
1 + �(t)Ŵi(t)

)
.

(13)
(�2

p

�2
v

)
�
∗(�(t0)) ⟶ �2

1
, as n ⟶ ∞.

(14)C(t) =

{
�(t) ∶

(�2
p

�2
v

)
�
∗(�(t)) ≤ �2

1,�

}
,

A1.
1

n

n�
i=1

Ŵ2
i
(t)

p
�����→ �2

p
(t)

A2.
1√
n

n�
i=1

Ŵi(t)
L

�������→ N
�
0, �2

v
(t)
�

(15)

�
∗(�(t)) = 2

n+1∑
i=1

log
(
1 + �(t)Ŵi(t)

)

= 2

n+1∑
i=1

{
�(t)Ŵi(t) −

(
�(t)Ŵi(t)

)2
2

}
+ op(1).
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This completes the proof.   ◻

2.3  Transformed empirical likelihood for generalized Lorenz ordinate

Jing et  al. (2017) proposed the transformed empirical likelihood (TEL) as a sim-
ple transformation of the original EL to tackle the under-coverage problem. They 
claimed that TEL is superior in small sample sizes and multidimensional situations. 
The transformed empirical log-likelihood ratio can be defined as

where �(�(t)) is given in (7) and � ∈ [0, 1] . It should be noted that � = 1∕2 ensures 
the maximum expansion without violating the conditions (C2) stated in Jing et al. 
(2017). Hence, the transformed empirical log-likelihood ratio is defined as

Thus, the transformed empirical log-likelihood ratio is given as

Further, Jing et  al. (2017) showed that the TEL ratio meets four conditions that 
ensure the likelihood ratio’s asymptotic properties.

Theorem 2.3 Assume that E(X2) < ∞,  for all t0 ∈ (0, 1), let �t(�(t0)) be the trans-
formed log-empirical likelihood ratio function defined by (18). We have

in distribution.

(16)

��2
p

�2
v

�
�
∗(�(t)) =

��2
p

�2
v

� n+1�
i=1

�
�(t)Ŵi(t)

�2
+ op(1)

=

�
1√
n

∑n+1

i=1
�(t)Ŵi(t)

�2

�2
v

�2
p

1

n

∑n+1

i=1
Ŵi(t)

2

+ op(1)

d
�����→ �2

1
.

(17)�t

(
�(t), �

)
= �(�(t)) ×max

{
1 −

�(�(t))

n
, 1 − �

}
,

(18)�t(�(t)) = �t

(
�(t), � =

1

2

)
= �(�(t)) ×max

{
1 −

�(�(t))

n
,

1

2

}
.

(19)�t(𝜃(t)) =

⎧
⎪⎨⎪⎩

�(𝜃(t))

�
1 −

�(𝜃(t))

n

�
if �(𝜃(t)) ≤ n

2
,

�(𝜃(t))

2
if �(𝜃(t)) >

n

2
.

(20)
(�2

p

�2
v

)
�t(�(t0)) ⟶ �2

1
, as n ⟶ ∞.
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Thus, an asymptotic (1 − �)100% confidence interval for �(t) at a fixed time t is 
given as follows

where �2
1,�

 is the upper �-quantile of the distribution of �2
1
.

Proof The proof is omitted as it is similar to the proof of Theorem 3.2 in Ratnas-
ingam and Ning (2022).   ◻

2.4  Transformed adjusted empirical likelihood for generalized Lorenz ordinate

Stewart and Ning (2020) developed a hybrid method based upon AEL and TEL 
methods called transformed adjusted empirical likelihood (TAEL). The TAEL 
method combines the benefits of both AEL and TEL methods. Let � ∈ [0, 1] . We 
define

where 𝓁∗(⋅) defined in (12). Thus, for � = 1∕2 , the transformed empirical log-likeli-
hood ratio �∗

t
(�(t)) is defined as,

This can be further viewed as

Theorem 2.4 Assume that E(X2) < ∞,  for all t0 ∈ (0, 1), let �∗
t
(�(t0)) be the trans-

formed log-empirical likelihood ratio function defined by (24). We have

in distribution.

Thus, an asymptotic (1 − �)100% confidence interval for �(t) at a fixed time t is 
given as follows

(21)C(t) =

{
�(t) ∶

(�2
p

�2
v

)
�t(�(t)) ≤ �2

1,�

}
,

(22)�
∗
t

(
�
∗(�(t)), �

)
= �

∗(�(t)) ×max

{
1 −

�
∗(�(t))

n
, 1 − �

}
,

(23)�
∗
t

(
�
∗(�(t)),

1

2

)
= �

∗(�(t)) ×max

{
1 −

�
∗(�(t))

n
,

1

2

}
.

(24)�
∗
t
(𝜃(t)) =

⎧
⎪⎨⎪⎩

l∗(𝜃(t))

�
1 −

�
∗(𝜃(t))

n

�
if �∗(𝜃(t)) ≤ n

2
,

�
∗(𝜃(t))

2
if �∗(𝜃(t)) >

n

2
.

(25)
(�2

p

�2
v

)
�
∗
t
(�(t0)) ⟶ �2

1
, as n ⟶ ∞.
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where �2
1,�

 is the upper �-quantile of the distribution of �2
1
.

Proof The proof of Theorem 2.4 is similar to Theorem 2.3. In this case, the EL ratio 
defined in (7) is replaced by the adjusted empirical log-likelihood ratio defined in 
(12). Thus, details are omitted here.   ◻

3  Simulation study

In this section, we conduct a simulation study to compare the performance of the 
proposed AEL, TEL, and TAEL-based confidence regions for the generalized Lor-
enz curve with EL-based confidence regions under various sample sizes in terms of 
coverage probabilities (CP) and mean lengths (ML) of the confidence intervals. The 
CP represents the proportion of times that the confidence regions contain the true 
value of the parameter among N simulation runs.

Since most income distributions are positively skewed, the Weibull, Chi-square, 
and Skew-Normal distributions appear to provide a good fit for the income data. 
Thus, in our simulation study, we consider that the overall distribution function F(x) 
is: 

1. Weibull distribution with shape parameter a = 1 , scale parameter b = 2 . The pdf 
of the Weibull distribution is given by 

2. �2 distribution with n = 3 degrees of freedom. The pdf of the Chi-square distribu-
tion is given by 

3. Skew-Normal distribution with location parameter � = 1 , scale parameter � = 3 , 
and shape parameter � = 5 . The pdf of the skew-normal distribution is given by: 

 where �(⋅) and Φ(⋅) are the pdf and cdf of the standard normal distribution. 
Further, in short-hand notation, we denote the skew-normal distribution by 
X ∼ SN(�, �, �).

We choose the sample size, n = 25, 50, 100, 150, 300 and 500 representing a range 
from small to large, and values of t0 = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 }. 

(26)C(t) =

{
�(t) ∶

(�2
p

�2
v

)
�
∗
t
(�(t)) ≤ �2

1,�

}
,

fX(x) =

(
a

b

)(
x

b

)a−1

e
−
(
x∕b

)a

, x > 0

fX(x) =
1

2n∕2Γ(n∕2)
xn∕2e−x∕2, x > 0

fX(x) =
2

�
�

(
x − �

�

)
Φ

(
�
x − �

�

)
, x ∈ ℝ,
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Further, we set the nominal significance level � = 5% . The results are based on 
10,000 iterations. To assess the performance of the proposed methods, we consider 
two commonly used criteria for evaluating the goodness of a confidence interval 
procedure. These criteria are: 

1. Coverage probability: Preferably, close to 95%.
2. Mean lengths: Smaller is preferable.

First, we compute bias and mean squared error (MSE) of the estimates for the gen-
eralized Lorenz ordinates for various distributions, including Weibull (1, 2), �2

3
 , and 

SN(1, 3, 5). The results are summarized in Table 1 and graphed in Fig. 1. It is evi-
dent that the bias of the estimate is consistently close to zero across all scenarios. 
Moreover, as the sample size increases, both bias and MSE generally decrease. 
Furthermore, it’s notable that irrespective of the sample size, both bias and MSE 
increase as the value of t increases.

Next, we compute the coverage probability and mean lengths of the confidence 
regions for the generalized Lorenz ordinates �(t) . The coverage probabilities are 
graphed in Fig. 2. In all cases, the CP tends to increase as the sample size increases. 
Among all four methods, the TAEL method consistently provides the highest CP. 
In particular, the TAEL approach occasionally results in over-coverage issues. For 

Fig. 1  Bias and MSE of the generalized Lorenz ordinate of Weibull(1, 2), �2

3
 , and SN(1, 3, 5) for various 

sample sizes
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Table 1  Bias and mean squared 
error (MSE) for the generalized 
Lorenz curve with various 
probability distributions

n t Weibull (1, 2) �2

3
SN(1, 3, 5)

Bias MSE Bias MSE Bias MSE

25 0.1 0.0095 0.0002 0.0214 0.0011 0.0356 0.0028
0.2 0.0083 0.0007 0.0133 0.0023 0.0126 0.0039
0.3 0.0284 0.0033 0.0489 0.0092 0.0601 0.0127
0.4 0.0170 0.0052 0.0235 0.0129 0.0184 0.0147
0.5 0.0506 0.0139 0.0773 0.0316 0.0826 0.0325
0.6 0.0253 0.0191 0.0319 0.0398 0.0224 0.0365
0.7 −0.0184 0.0291 −0.0368 0.0580 −0.0577 0.0522
0.8 0.0328 0.0545 0.0391 0.0972 0.0236 0.0744
0.9 −0.0536 0.0825 −0.0804 0.1409 −0.0935 0.1038

50 0.1 0.0020 0.0000 0.0040 0.0002 0.0045 0.0006
0.2 0.0042 0.0003 0.0070 0.0010 0.0065 0.0019
0.3 0.0064 0.0010 0.0096 0.0028 0.0082 0.0040
0.4 0.0087 0.0024 0.0118 0.0060 0.0096 0.0072
0.5 0.0109 0.0050 0.0138 0.0113 0.0108 0.0118
0.6 0.0130 0.0092 0.0156 0.0192 0.0118 0.0181
0.7 0.0152 0.0160 0.0173 0.0307 0.0123 0.0263
0.8 0.0173 0.0267 0.0190 0.0474 0.0124 0.0369
0.9 0.0193 0.0439 0.0205 0.0732 0.0114 0.0505

100 0.1 0.0010 0.0000 0.0020 0.0001 0.0020 0.0003
0.2 0.0020 0.0001 0.0035 0.0005 0.0030 0.0009
0.3 0.0031 0.0005 0.0048 0.0014 0.0038 0.0020
0.4 0.0042 0.0011 0.0059 0.0029 0.0046 0.0036
0.5 0.0052 0.0023 0.0071 0.0055 0.0051 0.0060
0.6 0.0064 0.0043 0.0082 0.0093 0.0054 0.0091
0.7 0.0076 0.0076 0.0091 0.0151 0.0057 0.0133
0.8 0.0090 0.0127 0.0101 0.0235 0.0058 0.0186
0.9 0.0102 0.0212 0.0111 0.0362 0.0055 0.0255

150 0.1 0.0007 0.0000 0.0014 0.0001 0.0011 0.0002
0.2 0.0014 0.0001 0.0025 0.0003 0.0019 0.0006
0.3 0.0021 0.0003 0.0034 0.0009 0.0025 0.0013
0.4 0.0029 0.0007 0.0043 0.0020 0.0031 0.0024
0.5 0.0037 0.0015 0.0052 0.0036 0.0036 0.0039
0.6 0.0045 0.0029 0.0061 0.0062 0.0039 0.0060
0.7 0.0055 0.0050 0.0067 0.0101 0.0041 0.0088
0.8 0.0063 0.0085 0.0072 0.0156 0.0043 0.0123
0.9 0.0070 0.0142 0.0075 0.0240 0.0042 0.0169

300 0.1 0.0003 0.0000 0.0007 0.0000 0.0002 0.0001
0.2 0.0007 0.0000 0.0013 0.0002 0.0005 0.0003
0.3 0.0011 0.0001 0.0018 0.0004 0.0007 0.0006
0.4 0.0015 0.0004 0.0021 0.0010 0.0009 0.0012
0.5 0.0019 0.0008 0.0026 0.0018 0.0010 0.0020
0.6 0.0023 0.0015 0.0030 0.0031 0.0010 0.0030
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t ≥ 0.5 , the TEL method outperforms EL, and AEL performs either slightly better or 
on par with the EL method. However, for t < 0.5 , the EL approach performs signifi-
cantly better than AEL and slightly better than the TEL method.

When considering the mean lengths of confidence intervals, the TAEL method 
yields a slightly longer mean length, but it remains within an acceptable range. 
Among all four methods, the AEL results in the shortest confidence intervals. For 
t < 0.5 , the confidence intervals based on the TEL and TAEL approaches have 
approximately the same mean lengths. In addition, regardless of the method, as t 
increases, the mean length also increases. However, as the sample size increases, the 
mean length of the confidence interval decreases. The mean lengths of confidence 
intervals are illustrated in Fig. 3.

4  Application to real data

In this section, we demonstrate the effectiveness of the proposed AEL, TEL, 
and TAEL methods for generalized Lorenz ordinate by constructing confi-
dence intervals for Median Household Income in 2020. The data set is available 
https:// www. ers. usda. gov/ data- produ cts/ county- level- data- sets/ downl oad- data/, 
which contains 3194 observations of the median household income in 2020, 
and they are grouped by state or county name. We mainly focus on examin-
ing the median income distribution of households in Arizona (AZ), California 
(CA), Nevada (NV), Oregon (OR), and the US as a whole. The Lorenz curves 
and the generalized Lorenz curves for the four states and the US are graphed in 
Fig. 4. The black dashed line represents the equality line. It is evident that Ari-
zona has the Lorenz curve that is closest to the equality line. Further, the USA 
has the most unequal income distribution, followed by California and Nevada. 
We also compute a 95% confidence interval for the generalized Lorenz ordinate 

Table 1  (continued) n t Weibull (1, 2) �2

3
SN(1, 3, 5)

Bias MSE Bias MSE Bias MSE

0.7 0.0028 0.0026 0.0032 0.0050 0.0011 0.0044
0.8 0.0034 0.0044 0.0032 0.0079 0.0010 0.0062
0.9 0.0038 0.0074 0.0030 0.0122 0.0008 0.0085

500 0.1 0.0002 0.0000 0.0005 0.0000 −0.0002 0.0001
0.2 0.0004 0.0000 0.0009 0.0001 −0.0001 0.0002
0.3 0.0007 0.0001 0.0012 0.0003 0.0000 0.0004
0.4 0.0009 0.0002 0.0015 0.0006 0.0000 0.0007
0.5 0.0011 0.0005 0.0018 0.0011 0.0000 0.0012
0.6 0.0014 0.0009 0.0021 0.0019 0.0000 0.0018
0.7 0.0016 0.0015 0.0023 0.0030 0.0000 0.0026
0.8 0.0019 0.0026 0.0024 0.0047 −0.0001 0.0037
0.9 0.0022 0.0043 0.0024 0.0072 −0.0002 0.0050

https://www.ers.usda.gov/data-products/county-level-data-sets/download-data/
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using EL, AEL, TEL, and TAEL methods with various t values considering 
t = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} . We considered all 3194 observations 
for the purposes of this analysis. The results are summarized in Table  2 and 
they are plotted in Fig. 5. We notice that EL and AEL perform similarly while 

Fig. 2  Coverage probabilities of the EL, AEL, TEL, and TAEL methods with a range of t0 values and 
various sample sizes for the generalized Lorenz ordinate of Weibull(1, 2), �2

3
 , and SN(1, 3, 5)



 S. Ratnasingam et al.

1 3

TEL and TAEL roughly produce the same confidence intervals. Additionally, 
the AEL approach consistently yields a shorter confidence length than the other 
three methods.

Fig. 3  Mean lengths (ML) of the confidence intervals based on the EL, AEL, TEL, and TAEL methods 
with a range of t0 values and various sample sizes for the generalized Lorenz ordinate of Weibull(1, 2), 
�2

3
 , and SN(1, 3, 5)
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Fig. 4  a Lorenz Curves and b generalized Lorenz curves for Arizona (AZ), California (CA), Nevada 
(NV), Oregon (OR), and USA

Fig. 5  A 95% confidence interval for the generalized Lorenz ordinate based on EL, AEL, TEL, and 
TAEL methods with various t values
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5  Discussions

In this article, we proposed powerful nonparametric EL-based methods for construct-
ing confidence intervals for generalized Lorenz ordinate. These methods include the 
adjusted empirical likelihood (AEL), the transformed empirical likelihood (TEL), 

Table 2  A 95% confidence 
intervals for the generalized 
Lorenz ordinates with various 
values of t for Median 
Household Income in 2020 in 
America

t �̂�(t) Method Lower Upper Length

0.1 3815.195 EL 3759.1760 3871.7118 112.5535
AEL 3757.9974 3870.5021 112.5048
TEL 3756.8501 3871.6701 114.8200
TAEL 3758.0284 3872.8800 114.8516

0.2 8240.058 EL 8145.7837 8334.8855 189.1324
AEL 8143.2260 8332.2851 189.0591
TEL 8140.5307 8335.0126 194.4819
TAEL 8143.0881 8337.6133 194.5251

0.3 13,027.020 EL 12896.9940 13157.5745 260.6236
AEL 12,908.4210 13,168.9741 260.5531
TEL 12,903.4394 13,173.9962 270.5568
TAEL 12,892.0084 13,162.6007 270.5923

0.4 18,138.190 EL 17,973.2271 18,303.5235 330.3522
AEL 17,967.5732 18,297.8236 330.2504
TEL 17,959.0887 18,306.3482 347.2595
TAEL 17,964.7429 18,312.0477 347.3048

0.5 23,514.140 EL 23,312.6016 23,715.7678 403.2358
AEL 23,322.5887 23,725.6854 403.0967
TEL 23,307.9250 23,740.3629 432.4379
TAEL 23,297.9302 23,730.4531 432.5230

0.6 29,186.760 EL 28,947.5843 29,425.4732 477.9736
AEL 28,956.5766 29,434.2810 477.7044
TEL 28,930.0349 29,460.7166 530.6816
TAEL 28,921.0092 29,451.9423 530.9331

0.7 35,224.900 EL 34,941.7069 35,506.5735 564.9692
AEL 34,929.3294 35,494.0013 564.6719
TEL 34,863.9490 35,558.6065 694.6575
TAEL 34,876.1887 35,571.3135 695.1248

0.8 41,650.550 EL 41,323.3627 41,974.1675 650.9197
AEL 41,328.4634 41,979.0655 650.6021
TEL 41,191.9480 42,112.0198 920.0719
TAEL 41,186.8051 42,107.1635 920.3584

0.9 48,694.690 EL 48,301.5894 49,079.4584 777.9221
AEL 48,304.5085 49,082.1298 777.6213
TEL 48,139.2496 49,239.0692 1099.8196
TAEL 48,136.2785 49,236.4482 1100.1697
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and the transformed adjusted empirical likelihood (TAEL). We derive the limiting 
distributions of the generalized Lorenz ordinate based on the AEL, TEL, and TAEL 
methods. Simulations show that the proposed TEL and TAEL methods improve the 
coverage probability compared to the EL method. According to the simulation study, 
we highly recommend the TAEL method for t < 0.5 and small sample sizes. When 
t ≥ 0.5 , both the EL and AEL approaches yield comparable results for medium and 
large samples, making AEL an additional option. While the TEL method is suitable 
for large samples (n ≥ 300) , the TAEL method is appropriate for all sample sizes. In 
real-world applications, we recommend the TAEL approach as it consistently offers 
superior coverage compared to the other three methods. It’s worth noting although 
the confidence intervals based on the TAEL approach are longer than others, they 
remain within an acceptable range. Our real-world data application demonstrates 
that the proposed methods are competitive with the EL method while also address-
ing its limitations.

Acknowledgements We would like to thank two anonymous referees for their comments, which have 
contributed to this improved version of the work. We also would like to express our appreciation to the 
Office of Student Research (OSR) at California State University, San Bernardino, for creating a support-
ive environment for conducting this research.

Declarations 

Conflict of interest The authors declare that they have no conflict of interest.

References

Allen A (1990) Probability, statistics, and queuing theory with computer science applications, 2nd edn. 
Academic Press

Beach CM, Davidson R (1983) Distribution-free statistical inference with Lorenz curves and income 
shares. Rev Econ Stud 50(4):723–735

Belinga-Hall N (2007) Empirical likelihood confidence intervals for generalized Lorenz curve. Thesis, 
Georgia State University

Chang R, Halfon N (1997) Graphical distribution of pediatricians in the united states: an analysis of the 
fifty states and Washington, DC. Pediatrics 100:172–179

Chen J, Variyath A, Abraham B (2008) Adjusted empirical likelihood and its properties. J Comput Graph 
Stat 17(2):426–443

Gastwirth JL (1971) A general definition of Lorenz curve. Econometrica 39:1037–1039
Goldie CM (1977) Convergence theorems for empirical Lorenz curves and their inverses. Adv Appl 

Probab 9:765–791
Hasegawa H, Kozumi H (2003) Estimation of Lorenz curves: a Bayesian nonparametric approach. J 

Econometr 115(2):277–291
Jakobsson U (1976) On the measurement of the degree of progression. J Public Econ 5:161–168
Jing B-Y, Tsao M, Zhou W (2017) Transforming the empirical likelihood towards better accuracy. Can J 

Stat 45(3):340–352
John AB, Chakraborti S, Paul DT (1989) Asymptotically distribution-free statistical inference for gener-

alized Lorenz curves. Rev Econ Stat 71(4):725–727
Kobayashi Y, Takaki H (1992) Geographic distribution of physicians in japan. Lancet 340:1391–1393
Lambert PJ (2001) The distribution and redistribution of income: a mathematical analysis, 2nd edn. Man-

chester University Press, Manchester
Li M, Ratnasingam S, Ning W (2022) Empirical-likelihood-based confidence intervals for quantile 

regression models with longitudinal data. J Stat Comput Simul 92(12):2536–2553
Lorenz MC (1905) Method of measuring the concentration of wealth. J Am Stat 9:209–219



 S. Ratnasingam et al.

1 3

Luo S, Qin G (2019) Jackknife empirical likelihood-based inferences for Lorenz curve with kernel 
smoothing. Commun Stat-Theory Methods 48(3):559–582

Marshall W, Olkin I (1979) Inequalities: theory of majorization and its applications. Academic Press, 
New York

Mosler K, Koshevov G (2007) Multivariate Lorenz dominance based on Zonoids. ASTA: Adv Stat Anal 
91:57–76

Owen AB (2001) Empirical likelihood. Chapman & Hall, New York
Qin G, Yang B, Belinga-Hall N (2013) Empirical likelihood-based inferences for the Lorenz curve. Ann 

Inst Stat Math 65:1–21
Ratnasingam S, Ning W (2022) Confidence intervals of mean residual life function in length-biased sam-

pling based on modified empirical likelihood. J Biopharm Stat. https:// doi. org/ 10. 1080/ 10543 406. 
2022. 20891 57

Ryu HK, Slottje DJ (1996) Two flexible functional form approaches for approximating the Lorenz curve. 
J Econometr 72:251–274

Sen A (1973) On economic inequality. Norton, New York
Shi Y, Liu B, Qin G (2019) Influence function-based empirical likelihood and generalized confidence 

intervals for the Lorenz curve. Stat Methods Appl 29:427–446
Stewart P, Ning W (2020) Modified empirical likelihood-based confidence intervals for data containing 

many zero observations. Comput Stat 35(4):2019–2042
Tsao M (2013) Extending the empirical likelihood by domain expansion. Can J Stat 41(2):257–274
Yang BY, Qin GS, Belinga-Hill NE (2012) Non-parametric inferences for the generalized Lorenz curve. 

Sci Sin Math 42(3):235–250

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and 
applicable law.

https://doi.org/10.1080/10543406.2022.2089157
https://doi.org/10.1080/10543406.2022.2089157

	Nonparametric confidence intervals for generalized Lorenz curve using modified empirical likelihood
	Abstract
	1 Introduction
	2 Empirical likelihood based methods
	2.1 Empirical likelihood
	2.2 Adjusted Empirical Likelihood for Generalized Lorenz Ordinate
	2.3 Transformed empirical likelihood for generalized Lorenz ordinate
	2.4 Transformed adjusted empirical likelihood for generalized Lorenz ordinate

	3 Simulation study
	4 Application to real data
	5 Discussions
	Acknowledgements 
	References


