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Real-time change point detection in linear models using
the ranking selection procedure
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ABSTRACT
We propose a novel sequential change point detection method in
linear models. Our method uses a given historical data set to deter-
mine the prechange model. Significant features are selected using
the ranking procedure, which is an innovative approach aimed at
revealing the rank of all features in terms of their effects on the
model. We establish the asymptotic properties of the test statistic
under the null and alternative hypotheses. Simulations are con-
ducted to illustrate the performance of the proposed method. We
conclude with a real data application to illustrate the detection
procedure.
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1. INTRODUCTION

Sequential change point analysis plays an important role in statistical quality control
and reliability, bioinformatics, signal processing, and medical imaging. In sequential
analysis, the goal is to detect the structural change as quickly as possible while control-
ling the false alarm rate. This decision must be taken in real time based on prior infor-
mation. There is a broad range of literature discussing the sequential change point
detection procedure for low-dimensional data; see, for example, Page (1954), Shiryaev
(1963), Roberts (1966), Lorden (1971), Siegmund (1985), Horv�ath et al. (2004),
Horv�ath, Kokoszka, and Steinebach (2007), and Tartakovsky, Nikiforov, and Basseville
(2014).
The recent advances in technological development have enabled massive volumes of

data to be collected in a short amount of time. For example, medical, genomics, traffic
monitoring, and health care data contain an endless number of observations and have a
large number of explanatory variables for each observation. Horv�ath et al. (2004) pro-
posed the sequential change point detection method in linear regression. Unfortunately,
their method cannot be applied to many practical problems because it only works with
univariate data. The high-dimensional linear model, in which the dimension p is signifi-
cantly greater than the sample size n, has garnered substantial attention recently, driven
by a variety of applications. Penalization or regularization techniques are proven to be
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effective where the number of covariates is larger than the sample size. Several penaliza-
tion methods have been proposed, including the least absolute shrinkage and selection
operator (LASSO; Tibshirani 1996), smoothly clipped absolute deviation (SCAD; Fan
and Li 2001), elastic net (Zou and Hastie 2005), adaptive LASSO (Zou 2006), grouped
LASSO (Yuan and Lin 2006), Dantzig (Candes and Tao 2007), and minimax concave
penalty (MCP; Zhang 2010). In particular, regularized methods such as LASSO, adaptive
LASSO, SCAD, and MCP can select significant variables and estimate the coefficient
simultaneously. The penalty function remains crucial for high-dimensional data
analysis.
Extensive work has been done on sequential change point analysis. Chen (2019) pro-

posed an online detection framework that utilizes nearest-neighbor information for
high-dimensional data. This method makes use of the similarity structure represented
by nearest neighbors. L. Chu and Chen (2019) studied sequential change point detection
for high-dimensional and non-Euclidean data that uses graph-based test statistics under
k-nearest neighbors. Ratnasingam and Ning (2021b) studied the sequential change point
detection method to monitor structural changes in penalized quantile regression models.
Ratnasingam and Ning (2021a) proposed a method to detect the structural changes in
the SCAD penalized regression model for high-dimensional data sequentially. They
established the asymptotic properties of the test statistics under the null and alternative
hypotheses. Following Gu (2021), we adopted the Bechhofer, Dunnett, and Sobel (1954)
single-sample multiple decision procedures for low- and medium-dimensional variable
selection in linear models. In other words, we are interested in selecting the best covari-
ates that have the greatest effect on the regression model. In particular, when compared
to other features, the best features contribute the most to the predictions. To the best of
our knowledge, this is the first study that utilizes the ranking selection procedure in
change point analysis.
The remainder of the article is organized as follows. In Section 2, we describe nota-

tions and a framework for the variable selection and estimation based on the ranking
procedure. In Section 3, we briefly describe the sequential change point detection
method and provide the corresponding asymptotic results. In Section 4, an extensive
simulation study is conducted under different settings to investigate the finite sample
performances of the proposed method. A real data application is given in Section 5 to
illustrate the detecting process. In Section 6, we discuss our results and make conclu-
sions. The proofs are deferred to the appendix.

2. METHODOLOGY

Throughout this article, we adopt notations similar to those of Ratnasingam and Ning
(2021a). Suppose we have a random sample fYi, xi1, :::, xipg, i ¼ 1, :::,m: Consider the
model

Y ¼ Xbþ E, (2.1)

where Y ¼ ðY1, :::,YmÞ is a vector of responses, X is an m� p matrix of predictors

with ith row X>
i ¼ ðxi1, :::, xipÞ, where i ¼ 1, :::,m; and jth column Xj ¼

ðx1j, :::, xmjÞ>, where j ¼ 1, :::, p: In this model, X is considered fixed data. We also
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assume that there is no random component, including no measurement error. The b ¼
ðb1, :::, bpÞ> is a p-vector of unknown parameters and E ¼ ðE1, :::, EmÞ> represents an

m-vector of independent and identically distributed (i.i.d.) random variables with mean
0 and variance r2:
We consider a sparse model in which most regression coefficients are exactly zero

and only certain predictors have regression coefficients that are nonzero. Without loss
of generality, we assume that the first q regression coefficients are nonzero, whereas the

rest of the ðp� qÞ coefficients are zero. Let X ¼ ðXð1Þ,Xð2ÞÞ, where Xð1Þ is the first m�
q submatrix and Xð2Þ is the last m� ðp� qÞ submatrix of X. Similarly, we denote b ¼
ðbð1Þ, bð2ÞÞ: Let Cm ¼ 1

mX>X and Cðu, vÞ
m ¼ 1

mXðuÞ>XðvÞ, for u, v ¼ 1, 2: Let b0 ¼
ðb01, :::, b0pÞ be the true unknown parameter vector. Let A ¼ fj 2 f1, :::, pg : b0j 6¼ 0g
be the index set of the nonzero coefficients for the true parameter, where b0j is the jth

component of the true parameter vector b0: We denote the regression estimate based

on the ranking procedure by b̂
w
: Let A� ¼ fj 2 f1, :::, pg : b̂

w
j 6¼ 0g be the index set of

the regression estimator based on the ranking procedure obtained using the historical

sample size m, where b̂
w
j is the jth element of the regression estimator b̂

w
that is

obtained by the ranking procedure.

2.1. Rank-Based Variable Selection Method in Linear Models

Now we are in a position to discuss the rank-based variable selection method in linear
models. For simplicity, let the columns of X be standardized and Y be centered (we no
longer need a constant column in X). The true model is defined in (2.1). The jbjj, j ¼
1, :::, p is defined as its effect size. The random error vector E 2 Rm�1 follows Nð0, r2Þ,
which is assumed known to us. It should be clear that the effect size reveals the impact
of each predictor Xi on Y. We then define X1, :::,Xk with the largest effect sizes as the
“best” k predictors , which are of interest in variable selection. In particular, the perfect

case would be ðX1, :::,XkÞ exactly coincides with Xð1Þ, i.e. k=q.

2.1.1. Estimation of b
The ordinary least squares method finds the coefficients b by solving the convex problem

b̂
LS ¼ minimize

b2Rp�1
k Y � Xb k22 ,

which yields the unique solution b̂
LS ¼ ðX>XÞ�1 X>Y if X>X is nonsingular. It can be

shown that b̂
LS

follows Npðb, r2ðX>XÞ�1).

2.1.2. Decorrelation of estimators

The ordinary least squares method yields b̂
LS

following Npðb, r2ðX>XÞ�1Þ: But the one-
sample ranking approach relies on the assumption of independence among populations,
which indicates that the covariance matrix needs to be a diagonal matrix. Thus, we shall
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decorrelate b̂
LS
j (j ¼ 1, :::, p). According to Gu (2021), we apply a principal component

analysis (PCA) whitening transformation on X as follows:

X� ¼ XVK�1=2,

where K is a diagonal matrix containing the eigenvalues of XTX (assume that they are
all positive). V is a matrix containing the orthonormal eigenvectors of XTX, which gives

a rotation needed to decorrelate X. And the factor of K�1=2 makes variances equal to 1.
Then the least squares estimator in terms of X� is given by

b̂
w ¼ ðX�>X�Þ�1X�>Y:

As a result, b̂
w

follows Npðbw, r2IpÞ, where bw ¼ K
1
2V>b: After decorrelation, our

goal is switched to rank and select jbwj: It is worth mentioning that this proposed
method can be effective when there is multicollinearity.

2.1.3. Ranking procedure–based variable selection

Let bwþj ¼ jbwj j and b̂
wþ
j ¼ jb̂

w

j j ¼
���PB

l¼1
b̂
w
jl

B

��� (j ¼ 1, :::, p; l ¼ 1, :::,B), where B indicates

the number of resamplings. The ranked jb̂
w

j j and jbwj j are denoted as b̂
wþ
½j� and bwþ½j� ,

respectively. In addition, let b̂
w

ðjÞ be the mean of resampling estimators related to bwþ½j� :

And jb̂
w

ðjÞj is denoted as b̂
wþ
ðjÞ : We consider Bechhofer (1954) the least favorable config-

uration as

bwþp½ � � bwþp�kþ1½ � ¼ 0

bwþp�kþ1½ � � bwþp�k½ � ¼ d�

bwþp�k½ � � bwþ1½ � ¼ 0

:

8>>>>><
>>>>>:

Given one group of resampling estimators, let x ¼ jb̂
w
j:

Theorem 2.1. Under the foregoing assumptions about random error terms and the least
favorable configuration, the probability of a correct ranking of jbwj can be expressed as

g ¼ Pr max
n
b̂
wþ
ð1Þ , :::, b̂

wþ
ðp�kÞ

o
< min

n
b̂
wþ
ðp�kþ1Þ, :::, b̂

wþ
ðpÞ
o� �

¼ 2ðp� kÞ
ðþ1

0
½2UðzÞ � 1�p�k�1 2� Uðz � dÞ � Uðz þ dÞ½ �k/ðzÞdz,

where z ¼ x
r=
ffiffi
B

p , d ¼ d�

r=
ffiffi
B

p , and /ð�Þ, Uð�Þ stand for the probability density function and

cumulative distribution function of the standard normal distribution, respectively.
Given fixed B, we prespecify d� as “worth detecting” for each possible value of k ðk < pÞ:

Theorem 2.1 would produce the corresponding probability of a correct ranking of jbwj: Gu
(2021) proposed a ranking approach–based variable selection (RPVS) as follows:
The RPVS algorithm:
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Step 1: Generate a PCA whitening transformation on X and center Y, denoted as X�

and Y�, respectively.
Step 2: Given the known r2, we prespecify g, B, and d�: Then we set k to start from

1 to p� 1 and decide the value(s) of k based on the criterion such that
Theorem 2.1 is ensured to be at least g, denoted as ks, for s ¼ 1, :::, t
and t 2 ½1, p� 1�:

Step 3: Regress Y� on X� and apply residuals bootstrap B times to generate
YBl , l ¼ 1, :::,B:

Step 4: For each pair of ðYBjl ,X�Þ, we apply ordinary least squares to generate b̂
w
jl ,

for j ¼ 1, :::, p and l ¼ 1, :::,B:
Step 5: Compute b̂

wþ
:

b̂
wþ
j ¼

���� 1B
XB
l¼1

b̂
w
jl

����, for j ¼ 1, :::, p; l ¼ 1, :::,B;

Step 6: Rank all b̂
wþ
j , denoted as b̂

wþ
½j� : For each ks from step 2, we choose the ks

covariates according to the observed
n
b̂
wþ
½p�ksþ1�, :::, b̂

wþ
½p�
o

as the “best” ks pre-

dictors at least at the confidence level of s: Then we drop the rest of the
“poor” (p� ks) covariate(s) out of the input matrix X. In other words, we
construct a submatrix of X� that has n rows and ks columns, denoted as X�

ks
,

for s ¼ 1, :::, t:
Step 7: Regress Y� on X�

ks
, and denote the corresponding model as Ms, for s ¼

1, :::, t: Regressing Y� on X�, the full-sized model is denoted as MF:

Step 8: For each Ms and MF, calculate the expected predictor error in terms of the
test data set, denoted as test:errs and test:errF , respectively. Then the opti-
mum choice of k is defined as

kopt ¼ argmins2 1, p�1½ �ftest:errsg, minftest:errsg � test:errF
p, minftest:errsg > test:errF:

�

Note that the value of d� “worth detecting” is assigned based on our experience with Y�:
In general, if one wants to include more predictors in the model at the start of the variable
selection process, a smaller d� value is preferred, because it allows for more predictors to
be included, and vice versa. However, a smaller d� will increase the computational time. In
this approach, k is treated as a tuning parameter. We will choose k to minimize the
expected prediction error according to the test data or incoming observations.

3. SEQUENTIAL CHANGE POINT PROBLEM

Let m be the size of the historical sample. We assume that there is no change in the his-
torical sample. This assumption was considered in C.-S. Chu, Stinchcombe, and White
(1996), Horv�ath et al. (2004), Zhou, Wang, and Tang (2015), and Ratnasingam and
Ning (2021b). The historical sample is used to build the prechange regression model.
After the historical sample size m, we continue to monitor the future incoming
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observations fYi, xi1, :::, xipg, i ¼ mþ 1,mþ 2, ::: sequentially. Let Tm be the monitoring
horizon. The linear model after historical observations m is

Yi ¼ X>
i bi þ Ei, i ¼ mþ 1,mþ 2, ::: (3.1)

Our objective is, at each time point i, to test whether our model is the same as the
model with the historic sample m. Under the null hypothesis, if there is no change in
the coefficients,

H0 : bi ¼ b0 for i ¼ mþ 1,mþ 2, ::: (3.2)

Under the alternative hypothesis, at an unknown time point s, the coefficients change
from b0 to b1: There exists s � 1 such that

H1 :
bi ¼ b0 ; i ¼ mþ 1, :::,mþ s ,
bi ¼ b1 ; i ¼ mþ sþ 1, :::mþ Tm and b0 6¼ b1:

�
(3.3)

Following Horv�ath et al. (2004), we define the detector based on the cumulative sum

(CUSUM) of residuals. That is, the CUSUM of Ê i, i ¼ mþ 1, :::,mþ s is defined as

Cðm, sÞ ¼ 1
r̂m

���� Xmþs

i¼mþ1

Ê i

����, (3.4)

where Ê i ¼ Y�
i � X�>

i b̂
w
for i ¼ mþ 1,mþ 2, ::: and r̂2

m is the error variance, defined as

r̂2
m ¼ 1

ðm� koptÞ
Xm
i¼1

ðY�
i � X�>

i b̂
wÞ2, (3.5)

where kopt is the number of nonzero coefficients in the selected model based on the
ranking procedure, and this is the estimated value of q. For a given constant c 2
½0, 1=2Þ, the gðm, s, cÞ is called the normalizing function, defined as

gðm, s, cÞ ¼ m1=2 1þ s
m

� �	
s

sþm


c
, (3.6)

where c is called the control parameter. Following C.-S. Chu, Stinchcombe, and White
(1996) and Horv�ath et al. (2004), we propose the test statistic for monitoring structural
change:

X ¼ sup1�s�Tm

Cðm, sÞ
gðm, s, cÞ : (3.7)

Now, let N > 0: Suppose Tm < 1 with limm!1 Tm=m ¼ N: The stopping time for
the monitoring process is defined as

KðmÞ ¼ inffs � 1 : if Cðm, sÞ � gðm, s, cÞcaðcÞg,
Tm for all s ¼ 1, :::,Tm,

�
(3.8)

where caðcÞ is the ð1� aÞ th quantile of the asymptotic distribution obtained in
Theorem 3.1.
Under the null hypothesis,

lim
m!1PðKðmÞ < 1Þ ¼ a, (3.9)
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and under the alternative hypothesis,

lim
m!1PðKðmÞ < 1Þ ¼ 1: (3.10)

Our simulation study revealed that the monitoring process stops promptly for large c
values. Thus, the large value of c is preferred when the change in the regression coeffi-
cients happens shortly after m. We assume that the following conditions hold:

A1. The model errors E1, :::, Em, Emþ1, ::: are i.i.d. random variables. EðEiÞ ¼
0,VarðEiÞ ¼ r2 < 1 and EðjE1jqÞ < 1 for some q � 2:

A2. There is a positive definite matrix C and a constant f > 0 such that���� 1m
X

1�i�m

Xi X
>
i � C

���� ¼ Oðm�fÞ a:s:

A3. N ¼ OðmkÞ with some 1 � k < 1 and limm!1 inf N=m > 0:

Assumption A1 is standard in a regression model. Assumption A2 is used in Horv�ath
et al. (2004), Horv�ath, Kokoszka, and Steinebach (2007), and Ratnasingam and Ning
(2021a). Assumption A3 is considered in the linear regression model with a change
point; see Horv�ath, Kokoszka, and Steinebach (2007) and Ciuperca (2015).

Theorem 3.1. Under Assumptions A1–A3, if the null hypothesis holds,

lim
m!1PðX � caðcÞÞ ¼ P

�
sup

0�t�N=ðNþ1Þ

kWðtÞk1
tc

� caðcÞ
�
,

where fWðtÞ, 0 � t < 1g denotes the l-dimensional Wiener process, where l is the num-
ber of significant features in the model based on historical data.

The asymptotic distribution of test statistics may be obtained using Theorem 3.1. The
asymptotic critical value caðcÞ can be obtained from

P
	
sup0�t�N=ðNþ1Þ

kWðtÞk1
tc

� caðcÞ


¼ a,

where a 2 ð0, 1Þ and the tuning parameter 0 � c < 1=2: We obtain asymptotic critical
values through simulation. First, we generate a sequence of i.i.d. l-dimensional random

vectors ei ¼ ðei1, ei2, :::, eilÞ, where eij 	 Nð0, 1Þ: Define W�ðtÞ ¼ M�1=2PtM
i¼1 ei, where

M is a grid of 10,000. In each iteration, we calculate the test statistic maxkW�ðtÞ=tck1
for the proposed method over t 2 f1=M, 2=M, :::,N=ðN þ 1Þg: The critical value for a
level-a test can be estimated by the ð1� aÞ th quantile of the test statistics. The asymp-
totic critical values for various c and N values are given in Table 1 (Ratnasingam and
Ning 2021a).

Theorem 3.2. Under Assumptions A1–A3, if the alternative hypothesis holds, we have

sup
1�s�Tm

Cðm, sÞ
gðm, s, cÞ ! 1 as m ! 1:

The proofs of Theorems 3.1 and 3.2 are given in the Appendix.
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4. SIMULATION STUDIES

In this section, we conduct Monte Carlo simulations to evaluate the performance of the
sequential change point detection procedure in linear models using the ranking selec-
tion procedure. To evaluate the effectiveness, we examine three criteria typically used
for the determination of the quality of a sequential change point detection approach:

1. Type I error rate: Close to the nominal level
2. Power of the test: Preferably close to 1
3. Detection time under the alternative hypothesis: Stop as soon as possible after a

change is noticed.

We generate data from the following model:

Yi ¼ X>
i b0 þ Ei, i ¼ 1, :::,mþ Tm :

4.1. Low Dimension

To study the performance of the monitoring process in a medium-dimensional setting,
we conducted another simulation study. We generated data sets with ðp,mÞ, consider-
ing ð10, 75Þ and ð10, 100Þ: We adopted the same settings used in Ratnasingam and Ning
(2021a), as given below.
Setting I (type I error calculations)


 Under H0, the true parameter vectors b0 2 f�2, 0, 2, 0, 10,
1, 0, 0, 8, � 5g:


 The predictor variables Xi for all i 2 f1, :::, pgnf3, 4, 5g have a standard normal
distribution Nð0, 1Þ and X3 	 Nð2, 1Þ, X4 	 Nð4, 1Þ and X5 	 Nð5, 1Þ:


 The model errors Ei are i.i.d. Nð0, 1Þ:

Setting II (stopping time and power analysis)


 Under H0, the true parameter vectors b0 2 f0, 0, 2, 0, 0, 1, 0, 0, 1, 0g:

 Under H1, we consider the parameter vector b1 2 f0, 0,

0, 3, 0, 0, 1, 0, 0, � 1g:

Table 1. Asymptotic critical values for various values of N and control parameter c:
c

a N 0.00 0.25 0.49

0.010 2 2.4471 2.8169 3.7326
4 2.6865 2.9540 3.7450
6 2.7858 3.0044 3.7472
9 2.8471 3.0451 3.7499

0.025 2 2.2118 2.5620 3.4637
4 2.4306 2.6815 3.4744
6 2.5148 2.7352 3.4786
9 2.5721 2.7675 3.4799

0.050 2 2.0209 2.3590 3.2573
4 2.2224 2.4698 3.2682
6 2.2974 2.5104 3.2717
9 2.3515 2.5393 3.2741
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 Under H0, Xi for all i 2 f1, :::, 10gnf3, 4, 5g have a standard normal distribution
Nð0, 1Þ and X3 	 Nð2, 1Þ, X4 	 Nð4, 1Þ, and X5 	 Nð5, 1Þ:


 For the second distribution, under H1, the ith explanatory variable is Xi þ 0:8,
where Xi 	 Nð0, 1Þ for all i 2 f1, :::, 10g:


 The model errors Ei are i.i.d. Nð0, 1Þ:

Monte Carlo simulation was used to analyze the finite sample performance of the
detection procedure. First, we evaluated the empirical type I errors. The various values
of control parameter c and the different sizes of the historical observations m were con-
sidered. The c 2 f0, 0:25, 0:45g and m 2 f75, 100g: The results are based on 1,000 itera-
tions. The empirical type I error probabilities are summarized in Table 2. We observed
slightly deflated type I errors for small N; however, this improved as N increased. In
addition, the empirical type I errors appeared to increase when the control parameter
increased. Figure 1 compares the empirical type I errors for the proposed method. In
terms of the results, utilizing a large N and a large control parameter c could produce
empirical type I errors that are above the nominal level. As a result, for big N, a small
control parameter is preferable and vice versa. In addition, we observed a pattern in
which the empirical type I errors tended to decrease as the historical sample size m
increased.
Next, we conducted a power analysis using Setting II to assess the effectiveness of the

proposed method. Various control parameter values were considered, including c 2
f0, 0:25, 0:45g: Simulations were conducted at different true change point locations s� 2
f1, 25, 50g with various historical sample sizes, m 2 f75, 100g: The results are based on
2,500 iterations and are summarized in Table 3. It can be clearly seen that as the histor-
ical sample size increased, the power tended to increase. In addition, the power tended
to decrease as the control parameter increased. This was due to the fact that the empir-
ical type I error increased as the control parameter increased. Moreover, as the change
location moved further from the historical sample, the power tended to decrease. In the
stopping time calculations below, larger s� values resulted in more delayed detection, as
shown in Figure 2. This agrees with our foregoing conclusion that larger c values are
recommended if we want the monitoring process to stop promptly.
We monitored the process from ðmþ 1Þ to 9m observations with various historical

sample sizes, such as m 2 f75, 100g: In addition, we changed the true change point
location, considering s� 2 f1, 25, 50g and level a ¼ 0:05: Simulation results are

Table 2. Type I errors for various values of c and the nominal significance level a ¼ 0:05
and p ¼ 10:

c

m N 0.00 0.25 0.45

75 2 0.023 0.038 0.043
4 0.036 0.039 0.045
6 0.039 0.044 0.049
8 0.045 0.047 0.050

100 2 0.017 0.032 0.039
4 0.028 0.037 0.042
6 0.034 0.041 0.046
8 0.038 0.039 0.041
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summarized in Table 4. It is evident that the choice of the control parameter c affected the
stopping time. As noted in Horv�ath et al. (2004), our simulation results confirmed that
smaller c values result in a longer period in which structural changes can be detected,
whereas larger c values lead to quicker detection rates. Table 4 indicates that when the true
change point location is far away from the historical sample, a small c is preferable and
vice versa. Moreover, we estimated the densities of the stopping time at various change
point locations with different historical sample sizes (m) and various c values. The histor-
ical sample size m had a significant influence on the stopping time determination. We
observed a considerable variation in the estimated densities as m changed from 75 to 100.
There was a small variation between the estimated densities for a fixed control value c irre-
spective of the historical sample size. See the graph in Figure 2.

4.2. Medium Dimension

To study the performance of the monitoring process in a medium-dimensional setting,
we conducted another simulation study. We generated data sets with ðp,mÞ, consider-
ing ð100, 200Þ and ð100, 300Þ: We considered the following two settings:

Figure 1. Empirical type I error comparison for the low dimension.

Table 3. Power analysis for various values of c and the nominal significance level a ¼ 0:05
and p ¼ 10:

c

m s� 0.00 0.25 0.45

75 1 0.969 0.943 0.902
25 0.955 0.948 0.936
50 0.942 0.913 0.902

100 1 0.979 0.959 0.945
25 0.972 0.960 0.948
50 0.965 0.950 0.943
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Setting I (type I error calculations)


 The nonzero components of the true parameters are b0, 1 ¼ �5, b0, 2 ¼
2, b0, 3 ¼ 5, b0, 4 ¼ 1, b0, 5 ¼ �3, b0, 61 ¼ �10, and b0, 91 ¼ 8:


 The predictor variables Xi for all i 2 f1, :::, pgnf3, 4, 5g have a standard normal
distribution Nð0, 1Þ and X3 	 Nð2, 1Þ, X4 	 Nð4, 1Þ and X5 	 Nð5, 1Þ:


 The model errors Ei are i.i.d. Nð0, 1Þ:

Figure 2. Estimated density of the stopping time for s� ¼ f1, 25, 50g with low dimension.

Table 4. Summary statistics for the detection time for low dimension with
s� 2 f1, 25, 50g, c 2 f0, 0:25, 0:45g and a ¼ 0:05:

m ¼ 75 m ¼ 100

s� Summary/c 0 0.25 0.45 0 0.25 0.45

1 Min 3 2 1 4 2 1
Q1 10 4 2 11 5 2
Med 15 7 4 16 8 4
Q3 23 13 7 25 14 7
Max 128 127 128 129 129 121

25 Min 25 13 1 27 22 1
Q1 37 34 32 38 34 32
Med 44 39 38 45 39 37
Q3 54 49 47 55 49 46
Max 225 150 236 152 150 152

50 Min 25 13 1 48 22 1
Q1 64 62 61 65 62 61
Med 73 70 70 74 70 69
Q3 87 83 83 86 82 81
Max 219 219 240 195 195 195
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Setting II (stopping time and power analysis)


 Under H0, the true parameter vectors b0, 1 ¼ �1, b0, 2 ¼ 1, b0, 3 ¼ �1, b0, 4 ¼
4, b0, 5 ¼ �2, b0, 58 ¼ �3, and b0, 86 ¼ 2:


 Under H1, we consider the parameter vectors b1, 1 ¼ 3, b1, 2 ¼ 2, b1, 45 ¼ �2,
and b1, 93 ¼ 2:


 Under H0, Xi for all i 2 f1, :::, pgnf3, 4, 5g have a normal distribution Nð0, 1Þ
and X3 	 Nð2, 1Þ, X4 	 Nð4, 1Þ and X5 	 Nð5, 1Þ


 For the second distribution, under H1, the ith explanatory variable is Xi þ 0:8,
where Xi 	 Nð0, 1Þ for all i 2 f1, :::, pg:


 The model errors Ei are i.i.d. Nð0, 1Þ:

Table 5 summarizes the empirical type I errors for the medium dimension. The various
control parameter values c 2 f0, 0:25, 0:45g and the different sizes of the historical obser-
vations m 2 f200, 300g were considered. The results are based on 2,500 iterations.
Figure 3 compares the type I error for the proposed procedure. The empirical type I errors
based on the historical sample size m ¼ 200 were always larger than those based on m ¼
300: This suggests that the effect of m is more obvious in the medium dimension than in
the low dimension, as shown in Figure 3. In the proposed method, it is vital to properly
select the value of the control parameter. Type I errors were comparatively low for small c
values. In addition, smaller N provided slightly deflated type I errors, which improved for
large N. Thus, for small N, we recommend higher control parameter values close to 0.5. A
large historical sample, for example, m ¼ 300, produces deflated type I errors.
Table 6 compares the power of the proposed method. The process was monitored

from ðmþ 1Þ to 9m observations. The power was roughly equal to 1 for a large histor-
ical sample size m independent of the level of significance. Next, we obtained the stop-
ping time for the monitoring process. The true change point locations were
s� 2 f1, 25, 50g and level a ¼ 0:05: The results are summarized in Table 7. As we dis-
cussed previously, a larger c value is preferable when the change occurs quickly after
the historical sample size m. We observed variation in density plots but decreases due
to the large historical sample size. The estimated density curves are graphed in Figure 4.
Not surprisingly, all of the points highlighted under the low dimension apply to the
medium dimension as well. Furthermore, when comparing the numerical results to
those obtained in the low dimension, we observed that as the dimensionality increased,
the power and accuracy increased, whereas the empirical type I error decreased. We

Table 5. Type I errors for various values of c and the nominal significance level a ¼ 0:05
and p ¼ 100:

c

m N 0.00 0.25 0.45

200 2 0.030 0.033 0.035
4 0.032 0.038 0.038
6 0.036 0.038 0.040
8 0.038 0.041 0.044

300 2 0.020 0.024 0.033
4 0.022 0.026 0.035
6 0.025 0.027 0.036
8 0.027 0.033 0.038

140 C. GU AND S. RATNASINGAM



Figure 3. Empirical type I error comparison for the medium dimension.

Table 6. Power analysis for various values of c and the nominal significance level a ¼ 0:05
and p ¼ 100:

c

m s� 0.00 0.25 0.49

200 1 0.988 0.979 0.960
25 0.975 0.968 0.956
50 0.962 0.953 0.944

300 1 0.993 0.985 0.977
25 0.982 0.974 0.968
50 0.971 0.967 0.949

Table 7. Summary statistics for the detection time for medium dimension with
s� 2 f1, 25, 50g, c 2 f0, 0:25, 0:45g and a ¼ 0:05:

m ¼ 200 m ¼ 300

s� Summary/c 0 0.25 0.45 0 0.25 0.45

1 Min 3 2 1 4 2 1
Q1 13 3 2 18 4 2
Med 23 6 3 33 7 3
Q3 42 10 4 59 13 4
Max 842 170 68 669 354 28

25 Min 26 26 1 28 26 1
Q1 39 31 29 43 32 29
Med 52 37 32 61 38 32
Q3 78 49 40 93 51 38
Max 817 467 405 1,395 923 197

50 Min 51 30 1 53 31 1
Q1 66 59 56 72 60 56
Med 82 67 63 92 70 63
Q3 115 85 76 130 88 74
Max 1,490 1,489 1,520 2,077 986 997
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also compared the results presented in Tables 3, 4, and 6 in Ratnasingam and Ning
(2021a), and the results showed that the proposed method performs at least as well as
the SCAD-based sequential change point detection procedure. This demonstrates that
our proposed method is competitive compared to the existing methods for low- and
medium-dimensional data.

5. REAL DATA APPLICATION

In this section, we apply the proposed sequential change point detection method to
the HIV Drug Resistance Mutations data set. The data set was originally described
in Rhee et al. (2006). This data set includes the outcomes for one specific drug, nel-
finavir, a protease inhibitor, as well as the existence of protease gene mutations,
which may lead to drug resistance. In Rhee et al. (2006), HIV isolates from infected
people were extracted, sequenced, and evaluated for resistance to several medications
used in HIV therapy. The goal of their research was to identify the mutations asso-
ciated with treatment resistance, which will aid in the development of novel anti-
retroviral medications as well as the efficient use of those that are already available.
The data contain expression measurements of 361 genes from 842 patients. The
explanatory variables indicate the position and mutation. The response variable y is
the outcome of the drug susceptibility assay. Higher numbers suggest greater resist-
ance to the drug.

Figure 4. Estimated density of the stopping time for s� ¼ f1, 25, 50g with medium dimension.
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To find any structural changes in the data set, we first apply the standard log-likeli-
hood method while assuming normality of the data. There is no change point detected
in the first 150 observations. Thus, we can use any number of observations between 0
and 150. In our case, the first 125 observations are considered historical data.
Additionally, we set d� equal to the standard deviation of the response variable y.
Because we standardize the input matrix X, a change of one unit in the standard devi-
ation of the response variable is considered a reasonably significant change in drug
resistance testing.
We applied the method sequentially with the control parameter value c ¼ f0, 0:45g

with a ¼ 0:05: When c ¼ 0, we found seven change points including
f317, 383, 448, 542, 606, 671, 737g, and for c ¼ 0:45 we detected eight change points
including f314, 377, 441, 505, 567, 629, 692, 755g:
The change point locations corresponding to c ¼ 0 and c ¼ 0:45 are graphed in

Figure 5. We observed an early detection when c is close to 0.5. In particular, the
change points that correspond to c ¼ 0 are completely different from those that corres-
pond to c ¼ 0:45, as we expected. When c ¼ 0:45, we detected an additional change
point in the data. This is consistent with our simulation results, because the larger c s
are typically more sensitive to change points. In this particular example, c ¼ 0:45 is
preferable. Figure 5(b) clearly shows a change at 505; however, the choice of c ¼ 0 fails
to identify the change due to the delay detection, as shown in Figure 5(a).
The advantage of the sequential change point detection approach is that fewer sam-

ples are required for decision making in comparison with change point detection with a

Figure 5. Change point detection for the drug susceptibility assay when (a): c ¼ 0 and (b) c ¼ 0:45:
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fixed sample size. In this application, for example, our method only requires 125 obser-
vations and the monitoring process stops after 317 samples after the first change point
is detected. The traditional log-likelihood method, however, requires all observations
ðn ¼ 842Þ to estimate the change location.

6. DISCUSSION

In this article, we proposed a new sequential change point detection procedure for
high-dimensional data using the ranking selection procedure. Simulation studies were
conducted under two different scenarios, including low and medium dimensions. When
N increases, the type I error probability improves significantly. The proposed method is
superior for N � 6, whereas a large control parameter is preferable for small NðN < 6Þ:
Under the medium dimension, we observe that the type I error decreases as the histor-
ical sample size m increases, whereas under the low dimension, the effect of m is not
outstanding. Additionally, both the historical sample size and the control parameter
have a significant impact on test power in low and medium dimensions. Specifically,
the test power increases as the historical sample size increases, whereas it decreases as
the control parameter increases. Next, we determine the stopping time under various
settings. From our results, the larger control parameter values tend to detect structural
change much faster, whereas smaller control parameter values contribute to detection
delays. Similar to Ratnasingam and Ning’s (2021a) findings, if a change happens soon
after a historical sample size, we recommend a larger value of c close to 0.5. Smaller c
values are preferable if the structural change happens far away from the historical sam-
ple. Application to real data sets illustrates the sequential detection procedure. It should
be noted that the choice of c and m has an effect on the detection process and can be
determined in the context of the study.
Because our proposed method relies on PCA whitening transformation on X, there is

a trade-off between information loss and dimensionality reduction. However, this article
focuses on sequential change point detection rather than the interpretability of predic-
tors, and this approach has shown its competitiveness compared to the existing meth-
ods, including Ratnasingam and Ning (2021a). In the future, we would like to
investigate a sequential change point detection procedure using the ranking selection
procedure for high-dimensional data. Moreover, the simulation study indicates a reduc-
tion in the rate of type I errors for a large historical sample size. This has adverse side
effects such as reduction in power and detection delays. Therefore, a modified test stat-
istic is of interest.

APPENDIX PROOFS OF THEOREMS

Proof of Theorem 2.1. Let Xi be independently derived from normal distributions with
unknown mean li (i ¼ 1, :::, p) and a common known variance r2: And jlij and the ranked jlij
are denoted by labsi and labs½i� , respectively, where

0 � labs1½ � � ::: � labsp½ � :
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Let �Xi be the sample mean based on N independent observations from the ith population. j�Xij
and the ranked j�Xij are denoted by �Xabs

i and �Xabs
½i� , respectively. Additionally, let �X

s
ðiÞ be the sam-

ple mean related to the population with labs½i� , and j�Xs
ðiÞj is denoted by �Xabs

ðiÞ :
Recall that we are interested in selecting the “best” k populations among p populations in

terms of the rank of labsi (i ¼ 1, :::, p), which is unknown to us. Now we define the probability of
a correct ranking as

g ¼ Pr maxf�Xabs
ð1Þ , :::, �X

abs
ðp�kÞg < minf�Xabs

ðp�kþ1Þ, :::, �X
abs
ðpÞg

h i
(A.1)

where 1
Cðp, kÞ � g � 1:

We consider the following least favorable configuration:

labsp½ � � labsp�kþ1½ � ¼ 0

labsp�kþ1½ � � labsp�k½ � ¼ d�

labsp�k½ � � labs1½ � ¼ 0

:

8>>><
>>>:

Then we rewrite (A.1) as

g ¼ Pr maxf�Xabs
ð1Þ , :::, �X

abs
ðp�kÞg < minf�Xabs

ðp�kþ1Þ, :::, �X
abs
ðpÞg

h i
¼ k� Pr maxf�Xabs

ð1Þ , :::, �X
abs
ðp�kÞg < �Xabs

ðp�kþ1Þ < minf�Xabs
ðp�kþ2Þ, :::, �X

abs
ðpÞg

h i

¼ k
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ffiffiffiffi
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 !" #
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, (A.2)

where /ð�Þ and Uð�Þ are the probability density function and cumulative distribution function of
the standard normal distribution, respectively.

To ensure that the probability of a correct ranking based on �Xabs
½i� ði ¼ 1, :::, p) is at least g, Gu

(2021) reformulated (A.2) as
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g ¼ ðp� kÞ
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(A.3)

where z ¼ y
r=
ffiffiffi
N

p and d ¼ d�

r=
ffiffiffi
N

p :

Because b̂
LS

follows Npðb, r2ðX>XÞ�1) and the above ranking approach relies on the assump-

tion of independence and constant variance among p populations, we shall decorrelate b̂
LS

before
(A.3) is applied. First, we apply a singular value decomposition on X:

Xn�p ¼ Un�nSn�pV
>
p�p,

where U>U ¼ In, V>V ¼ Ip, and S is a rectangular diagonal matrix with nonnegative real num-
bers on the diagonal.

More specifically, the columns of U are generated by the eigenvectors of XX>, the eigenvec-
tors of X>X contribute the columns of V, and S>S ¼ Kp�p forms a diagonal matrix with the
eigenvalues of X>X (assume that they are all positive) on the diagonal. Then

X>X ¼ VS>U>USV>

¼ VKV> :

Secondly, we apply a PCA whitening transformation on X. Referring to Gu (2021), this process
is defined as follows.

PCA whitening transformation:

X� ¼ XVK�1=2,

where matrix V gives a rotation needed to decorrelate X (maps the original features to principal
components). The factor of K�1=2 makes variances equal to 1.

Then the least squares estimator in terms of X� is given by

b̂
w ¼ ðX�>X�Þ�1X�>Y:
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Now we have

Eðb̂wÞ ¼ E ðX�>X�Þ�1X�>ðXbþ eÞ
h i

¼ K
1
2V>b

¼ bw

Rb̂
w ¼ ðX�>X�Þ�1X�>VarðYÞX�ðX�>X�Þ�1

¼ r2ðX�>X�Þ�1

¼ r2 K�1
2V>VS>U>USV>VK�1

2

� ��1

¼ r2 K�1
2KK�1

2

� �
¼ r2Ip

:

Thus, b̂
w

follows Npðbw, r2IpÞ, where bw is a transformation of b due to whitening X.
Therefore, the probability of a correct ranking of jbwj is expressed as Theorem 2.1. This com-
pletes the proof.

A.1. Proofs in Section 3
We will show that Theorems 3.1 and 3.2 hold under the historical sample size m.

Proof of Theorem 3.1. Consider

Xmþs

i¼mþ1

Ê i ¼
Xmþs

i¼mþ1

Ei þ
Xmþs

i¼mþ1

X>
i ðb̂

w � b0Þ : (A.4)

Using Assumptions A1 and A2, by the central limit theorem, we have

ðX>
AXAÞ�1X>

A E ¼ OPðm�1=2Þ : (A.5)

Under Assumption A2, we have that

ðX>
AXAÞ�1 ¼ 1

m
C�1
A ð1þ oPð1ÞÞ , (A.6)

where matrix CA contains the elements of matrix C with the index in set A: Because ðb̂w � b0Þ
converges to zero with the rate m�1=2, we have

ðb̂w � b0ÞA ¼ ðX>
AXAÞ�1X>

A Eð1þ oPð1ÞÞ : (A.7)

Similarly, we can show that for any e > 0, s � 1, we have

P

� Xmþs

i¼mþ1

X>
i ðb̂

w � b0Þ ¼
Xmþs

i¼mþ1

X>
i,Aðb̂w � b0ÞA

�
> 1� 2e: (A.8)

Using (A.8) and (A.7), the relation (A.4) becomes

Xmþs

i¼mþ1

Ê i ¼
Xmþs

i¼mþ1

Ei �
� Xmþs

i¼mþ1

X>
i,A

�
ðX>

AX>
AÞ�1X>

A Eð1þ oPð1ÞÞ : (A.9)

Thus, the CUSUM of residuals based on the ranking selection procedure on A is given as

Xmþs

i¼mþ1

Ei �
� Xmþs

i¼mþ1

X>
i,A

�
ðX>

AX>
AÞ�1X>

A E : (A.10)

Now, applying Theorem 2.1 of Horv�ath et al. (2004), we can prove Theorem (A.4), which is
therefore excluded. �
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Proof of Theorem 3.2. The proof is similar to Horv�ath et al. (2004). Thus, details are omitted
here. �
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