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a b s t r a c t

In this paper, we present various new inequalities and bounds for the beta function
and some other related special functions. A variety of different approaches are used
to derive these results, including various results from probability theory, in particular.
The new upper and lower bounds for the beta function compare favorably to bounds
discussed in various other works. Moreover, the methods of this paper can be used to
obtain inequalities for other special functions not discussed in this work.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The beta function is defined as:

B(x, y) =

∫ 1

0
tx−1(1 − t)y−1dt, x > 0, y > 0.

The beta function can be expressed as the identity

B(x, y) =
Γ (x)Γ (y)
Γ (x + y)

,

where Γ (x) is the gamma function

Γ (x) =

∫
∞

0
ux−1e−udu.

In this paper, we are interested in discussing new bounds and inequalities for the beta function. A number of different
approaches are used to derive these bounds and inequalities. The beta function has many applications in such diverse
areas as probability/statistics, physics (such as string theory), economics, graph theory, reliability theory and actuarial
science. First, we present previously published bounds and inequalities for the beta function which are most relevant to
this work.

Theorem 1.1 (Dragomir et al. [1]). The beta function B(x, y) satisfies

0 ≤
1
xy

− B(x, y) ≤
1
4
. (1)
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The lower bound of (1) is sharp, but the upper bound is not. Later, Alzer [2] improved on this upper bound and obtained
heorem 1.2. below, which provides the best possible constant upper bound.

heorem 1.2 (Alzer [2], p. 16). For x ≥ 1 and y ≥ 1,

0 ≤
1
xy

− B(x, y) ≤ β,

where β ≈ 0.08731 is sharp.

Theorem 1.3 (Cerone [3], Corollary 1, p. 79). For x > 1 and y > 1,

max
{

1
xyx

,
1
yxy

}
≤ B(x, y) ≤ min

{
1
y

[
1 −

(
1 −

1
x

)y]
,
1
x

[
1 −

(
1 −

1
y

)x]}
.

heorem 1.4 (Cerone [3], Theorem 7, p. 80). For x > 1 and y > 1,

0 ≤
1
xy

− B(x, y) ≤
x − 1

x
√
2x − 1

·
y − 1

y
√
2y − 1

≤ 0.090169437 . . . (2)

where the upper bound is attained at

x = y =
3 +

√
5

2
≈ 2.618033988 . . .

In Remark 3 of Cerone [3], it is stated that the upper bound in (2) is better than the upper bound β of Alzer [2] for a good
majority of x and y values.

Theorem 1.5 (Cerone [3], Theorem 6, p. 80). For x > 1 and y > 1,

0 ≤
1
xy

− B(x, y) ≤ 2min
{
A(x), A(y)

}
,

where

A(x) =
x − 1

x
(
1+x/(x−1)

) .

heorem 1.6 (Cerone [3], Corollary 2, p. 81). For x > 1 and y > 1,

0 ≤
1
xy

− B(x, y) ≤ 2min
{
C(x) · C(y), bA

}
,

where

C(x) =
x − 1

x
√
2x − 1

, and

bA = max
x≥1

(
1
x2

−
Γ 2(x)
Γ (2x)

)
= 0.08731 . . .

According to Grenié & Molteni [4] we have

B(x, y) ≥
xx−1yy−1

(x + y)x+y−1 · F (x, y).

It is proven that log F (x, y) has a Taylor expansion in every point (x, y) with x, y > 0 whose coefficients can be explicitly
computed in terms of values for the Hurwitz zeta function and that the Taylor expansion produces lower or upper bounds
when truncated at even or odd order respectively, see, for example p.1430 of Grenié & Molteni [4]. Below Theorem 1.7
can be obtained when F (x, y) is bounded from below by 1, that is, F (x, y) ≥ F (0+, 0+) = 1 for every x, y > 0.

Theorem 1.7 (Grenié & Molteni [4]). For x > 0 and y > 0,

B(x, y) ≥
xx−1yy−1

(x + y)x+y−1 .

For other inequalities and bounds for the beta function and other special functions, see, Alzer [5], Fisher [6], Alzer [7],
McD.Mercer [8], Karatsuba & Vuorinen [9], Mitrinović [10] and Mitrinović et al. [11].
2
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. Preliminary results

To derive the new inequalities and bounds for the beta function, we shall need the following. The first few results
elow are from probability theory.

emma 2.1. Let (Ω, A, P) be a probability space and let A and B be independent, and continuous random variables. Let FA
nd FB be cumulative distribution functions (cdf) of A and B, respectively, with corresponding probability density functions (pdf)
iven by fA = F ′

A and fB = F ′

B. Then C := A + B has cdf FC given by

FC (c) = P(C ≤ c) =

∫ c

0
FA(c − b)dFB(b)

=

∫ c

0
FA(c − b)fB(b)db.

Equivalently, by symmetry:

FC (c) = P(C ≤ c) =

∫ c

0
FB(c − a)dFA(a)

=

∫ c

0
FB(c − a)fA(a)da.

We say that FC is the convolution of FA and FB (or vice-versa) and write FC = FA ∗ FB = FB ∗ FA.

Lemma 2.2 (Brook [12], p. 171–173). Let (Ω, A, P) be a probability space and let T be a random variable. Suppose there is a
real number, M > 0 with P(0 ≤ T ≤ M) = 1. Let µ = E(T ) be the mean or expected value of T . Then for all real values of s,
MT (s) = E(esT ), the moment-generating function of T , is bounded above as:

MT (s) ≤ 1 −
µ

M
+

µ

M
esM .

Lemma 2.3 (Chernoff [13], Chernoff’s Inequality). Let T be a random variable defined on a probability space (Ω, A, P). Then
for all real numbers a > 0,

P(T ≥ a) ≤ inf
s>0

e−sa
· MT (s),

where MT (s) is the moment-generating function of T and the ‘inf’ is taken over all s > 0 with MT (s) < ∞. (This is always the
interval (−∞, t0) for some t0 with 0 ≤ t0 ≤ ∞, if P(T ≥ 0) = 1).

Lemma 2.4 (Karlin & Studden [14]). Let T be a random variable defined on a probability space (Ω, A, P) with mean µ = E(T )
and variance σ 2

= V (T ) < ∞.

(a) Then for all real z ≥ 0, the one-sided Chebyshev’s inequality holds:

P(T ≥ µ + z · σ ) ≤
1

1 + z2
.

Equivalently, if a is a real number with a ≥ µ, then

P(T ≥ a) ≤
1

1 +

(
a−µ

σ

)2 .

(b) Markov’s inequality:

P(T ≥ a) ≤
µ

a
, if a ≥ µ.

emma 2.5 (From [15], Theorem 3.1). Let f : [a, b] −→ R be in C2([a, b]). Let H(t) be a continuous non-decreasing function
a, b] with H(a) = 0,H(b) = 1 and 0 < H(t) < 1 on (a, b). Let

L(t) =

⎧⎨⎩
∫ b
t (x − t)dH(x)
1 − H(t)

if a ≤ t < b,

0 if t = b.
3
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et

q1(t) = inf
{
f ′′(x) : t ≤ x ≤ t + L(t)

}
,

q2(t) = sup
{
f ′′(x) : t ≤ x ≤ t + L(t)

}
,

L1 =
1
2

∫ b

a
q1(t)

(
L(t)

)2dH(t),

and

L2 =
1
2

∫ b

a
q2(t)

(
L(t)

)2dH(t).

Then

L1 ≤

∫ b

a
f (t)dH(t) − f

(∫ b

a
tdH(t)

)
≤ L2.

3. New beta function inequalities

We are now in a position to prove some new inequalities and bounds for the beta function B(x, y).

Theorem 3.1. Let x > 0, y > 0 satisfy: xy < 1. (This includes the cases x ≤ 1 and y ≤ 1, but also includes other choices for
x and y.) Then:

B(x, y) ≥
(x + y) · (1 −

√
xy)2

xy(x + 1)(y + 1)
. (3)

Proof. Let A be a random variable with cdf FA and pdf fA given by

FA =

⎧⎨⎩
0 if a ≤ 0,
ax if 0 < a < 1,
1 if x ≥ 1.

nd

fA(a) =

{
xax−1 if 0 < x < 1,
0 otherwise.

(4)

et B be a random variable with cdf FB and pdf fB given by

FB =

⎧⎨⎩
0 if b ≤ 0,
by if 0 < b < 1,
1 if y ≥ 1.

nd

fB(b) =

{
yby−1 if 0 < y < 1,
0 otherwise.

(5)

Let C = A + B. Applying Lemma 2.1, C has cdf

FC (c) = P(C ≤ c) =

∫ c

0
FA(1 − t)fB(t)dt.

Letting c = 1,

FC (1) =

∫ 1

0
(1 − t)x · yty−1dt = yB(y, x + 1) = yB(x + 1, y).

Thus, we obtain

P(A + B ≤ 1) = y · B(x + 1, y). (6)

Also, by Lemma 2.3, with T = C = A + B, a = 1, we get

P(A + B ≥ 1) ≤ inf
s>0

e−sE(es(A+B))

= inf e−s
· E(esA) · E(esB).

(7)

s>0

4
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y Lemma 2.2,

E(esA) ≤

(
1

x + 1
+

x
x + 1

es
)

, and

E(esB) ≤

(
1

y + 1
+

y
y + 1

es
)

.

rom (7), upon multiplication of these two inequalities, we get

P(A + B ≥ 1) ≤ inf
s>0

[
e−s

·

(
1

x + 1
+

x
x + 1

es
)(

1
y + 1

+
y

y + 1
es

)]
(8)

Simple differentiation of the expression in brackets of (8) with respect to s gives that the optimal choice of s > 0
minimizing the right hand side (RHS) of (8) is

s = −
1
2

(
ln(xy)

)
> 0,

since xy < 1, with corresponding minimized value of P(A + B ≥ 1) of

P(A + B ≥ 1) ≤

(
1

x + 1
+

x
x + 1

√
1
xy

)
·

(
1

y + 1
+

y
y + 1

√
1
xy

)
√

1
xy

def.
= w(x, y).

rom (6), we get P(A + B ≤ 1) = y · B(x + 1, y) ≥ 1 − w(x, y). Since

B(x + 1, y) =
x

x + y
B(x, y),

we obtain

B(x, y) ≥
x + y
xy

(
1 − w(x, y)

)
=

(x + y)
(
1 −

√
xy

)2
xy(x + 1)(y + 1)

which is (3). This completes the proof. ■

Theorem 3.2. Suppose x > 0, y > 0 with
x

x + 1
+

y
y + 1

< 1. Then

B(x, y) ≥
x + y
x

·
z2

(z2 + 1)y
,

here

z =

1 −
x

x + 1
−

y
y + 1√

x
(x + 1)2(x + 2)

+
y

(y + 1)2(y + 2)

.

roof. Proceeding as in the proof of Theorem 3.1, using

E(A + B) =
x

x + 1
+

y
y + 1

,

nd

Var(A + B) =
x

(x + 1)2(x + 2)
+

y
(y + 1)2(y + 2)

,

and applying Lemma 2.4, part (a), with T = A + B, we obtain

P(A + B ≥ 1) ≤
1

.

1 + z2

5
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a
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T

gain applying Lemmas 2.1–2.3 and replacing w(x, y) in Theorem 3.1 proof by
1

1 + z2
and proceeding as we did there,

ith

z =

1 −
x

x + 1
−

y
y + 1√

x
(x + 1)2(x + 2)

+
y

(y + 1)2(y + 2)

.

e obtain

B(x, y) ≥
x + y
xy

(
1 −

1
1 + z2

)
=

x + y
x

·
z2

(z2 + 1)y
.

his completes the proof. ■

heorem 3.3. Suppose x > 0, y > 0 with xy < 1. Then

B(x, y) ≥
x + y
x

[
1 −

x
x + 1

−
y

y + 1

]
. (9)

Proof. Apply Lemma 2.4, part (b) with T = A + B. Then µ = E(T ) =
x

x + 1
+

y
y + 1

≤ 1, a = 1. Proceeding as in the

proofs of Theorems 3.1 and 3.2, we obtain (9). ■

Theorem 3.4. Suppose x > 0, y > 0 with xy < 1. Then

B(x, y) ≥
x + y
xy

[
1 − w(x, y)

]
. (10)

where

w(x, y) = e−s.

[
1 + s

(
x

x + 1

)
+ (es − 1 − s)

(
x

x + 2

)]
·

[
1 + s

(
y

y + 1

)
+ (es − 1 − s)

(
y

y + 2

)]
,

nd

s =
1
2
ln

(
1
xy

)
.

Proof. Proceed as in the proofs of Theorems 3.1 and 3.2, with some modifications. For s > 0 and 0 < t ≤ 1, let

g(s, t) =
est − 1

st
.

For s > 0 and t = 0, let g(s, t) = 1. For each fixed s, g(s, t) is a convex function of t . Consider the line segment joining
(0, g(s, 0)) and (1, g(s, 1)). By convexity of g in t for all s, we obtain

est − 1
st

≤ 1 +
(es − 1 − s)t

s
,

which gives

est ≤ 1 + st + (es − 1 − s)t2.

Replacing t by the values of the random variables A and B given earlier in the proof of Theorem 3.1, we obtain

E(esA) ≤ 1 + s
(

x
x + 1

)
+ (es − 1 − s)

(
x

x + 2

)
, and

E(esB) ≤ 1 + s
(

y
y + 1

)
+ (es − 1 − s)

(
y

y + 2

)
.

hus,

P(A + B ≥ 1) ≤

[
1 + s

(
x

x + 1

)
+ (es − 1 − s)

(
x

x + 2

)]
·

[
1 + s

(
y

y + 1

)
+ (es − 1 − s)

(
y

y + 2

)]
es

.
(11)

he value of s minimizing the RHS of (11) satisfies
x + θx

+
y + θy

= 1, (12)

x + 1 + θx y + 1 + θy

6
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w
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D

A

F

here θ = es − 1. Differentiation of (12) with respect to θ gives θ =

√
1
xy

− 1, which gives s =
1
2
ln

(
1
xy

)
> 0. Inserting

this value of s into (11) and using

B(x, y) ≥
x + y
xy

· P(A + B ≤ 1).

produces the lower bound given in (10). This completes the proof. ■

Theorems 3.1 and 3.2 presented lower bounds for B(x, y). Each of the proofs of these theorems can be modified to give
upper bounds also. Next, we present one such example.

Theorem 3.5. Suppose x > 0, y > 0 with
1

x + 1
+

1
y + 1

≤ 1. Then

B(x, y) ≤
x + y
xy

· P(x, y),

where

P(x, y) =
1

1 +
(
k(x, y)

)2 , and

k(x, y) =

1 −

(
1

x + 1
+

1
y + 1

)
√

x
(x + 1)2(x + 2)

+
y

(y + 1)2(y + 2)

.

roof. Proceed as in the proofs of Theorems 3.1–3.3 with some modifications. Let A and B be random variables with
istributions defined by (4) and (5) in the proof of Theorem 3.1. By considering the random variables C = 1 − A and
= 1 − B, we get

P(A + B ≥ 1) = 1 − P(C + D ≥ 1).

pplying Lemma 2.4 to T = C + D instead, we obtain, using E(C) =
1

x + 1
and E(D) =

1
y + 1

;

P(C + D ≥ 1) ≤
1

1 +
(
k(x, y)

)2 = P(x, y). (13)

Thus,

P(A + B ≥ 1) = 1 −
xy

x + y
B(x, y). (14)

rom (13) and (14), we obtain

xy
x + y

B(x, y) ≤ P(x, y) =
1

1 +
(
k(x, y)

)2 .

Solving for B(x, y), we obtain the desired result. ■

Note that Theorem above can be used for x ≥ 1 and y ≥ 1, in particular, but can be used also for some choices of
x < 1 or y < 1. Next we use the convolution idea in a different way.

Theorem 3.6. Suppose x > 0 and y >
x + 1
x

> 1. Then

B(x, y) ≤
1

x
(
1 +

(
k(x, y)

)2) ,

where

k(x, y) =

1
y

−
x

x + 1√
x
2 +

y
2

.

(x + 1) (x + 2) (y + 1) (y + 2)
7
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P
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T
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roof. Let A and B be random variables with A and B having respective pdfs:

fA(a) =

{
xax−1 if 0 < a < 1,
0 otherwise.

fB(b) =

{
(y − 1)(1 − b)y−2 if 0 < b < 1,
0 otherwise.

Then

B(x, y) =
1
x

∫ 1

0
fA(t) ·

(
1 − FB(t)

)
dt, (15)

where FB is the cdf of B. The integral in (15) is the convolution form of

P(B > A) = P(B − A > 0).

Thus

B(x, y) =
1
x
P(B − A > 0).

Applying Lemma 2.4 with T = B − A and using Z = k(x, y), we get the desired result. ■

Theorem 3.7. Suppose x > 0 and y > 0, with x ≤ y.

(a) If 0 < x < 1 and either x + y ≤ 1 or x + y ≥ 2, then

B(x, y) ≥ (1 − x)x+y−1
·

π

sin(πx)
.

(b) If 0 < x < 1 and 1 < x + y < 2, then

B(x, y) ≤ (1 − x)x+y−1
·

π

sin(πx)
.

roof. From the reflection formula of Euler, we have the integration formula

B(x, 1 − x) =
π

sin(πx)
, 0 < x < 1.

Then

B(x, y) =

∫ 1

0
(1 − t)x+y−1

·

[
tx−1(1 − t)−x

]
dt

=

(∫ 1

0
(1 − t)x+y−1

·

[
sin(πx)

π
tx−1(1 − t)−x

]
dt

)
·

π

sin(πx)
.

(16)

he expression in brackets of the integral in (16) is a probability measure on (0, 1). Also, (1− t)x+y−1 is a concave function
of t , if 1 < x + y < 2 and is a convex function of t otherwise. Applying Jensen’s inequality to (16) and using the formula∫ 1

0
tx(1 − t)−x

·
sin(πx)

π
dt = x,

we obtain both (a) and (b) of the theorem. ■

Theorem 3.8. Suppose x > 1 and y > 1. Then

B(x, y) ≤

(
x − 1

x + y − 2

)x−1( y − 1
x + y − 2

)y−1

. (17)

roof. Clearly,

B(x, y) =

∫ 1

0
tx−1(1 − t)y−1dt

≤

∫ 1

0
sup
0≤t≤1

tx−1(1 − t)y−1dt.
(18)

The supremum is attained at t =

(
x − 1

x + y − 2

)
, by easy differentiation of the integral in (18) with respect to t . Then (17)

s immediate. ■
8
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T

S

w

I

L

T

b

T

heorem 3.9. Suppose x1 > 0, x2 > 0. Then

(a)

B(x2, x2)
B(x1, x1)

≤

(
1
4

)x2−x1
, if x1 ≤ x2

(b)

B(x2, x2)
B(x1, x1)

≥

(
1
4

)x2−x1
, if x1 > x2

Proof. We shall prove only (a) since (b) follows immediately from (a). Let

g(w) = B(w, w) =

∫ 1

0

(
t(1 − t)

)w−1dw.

Differentiation of g(w) gives

g ′(w) =

∫ 1

0

(
t(1 − t)

)w−1(ln t + ln(1 − t)
)
dt

=

∫ 1

0

(
ln t + ln(1 − t)

)( 1
B(w, w)

(
t(1 − t)

)w−1
)
dt · B(w, w).

ince
(
ln t + ln(1 − t)

)
is a concave function of t , Jensen’s inequality gives, using∫ 1

0

1
B(w, w)

tw(1 − t)w−1dt =
1
2
,

e get

g ′(w)
g(w)

≤ ln
(
1
4

)
. (19)

ntegration of (19) from w = x1 to w = x2 gives, upon exponentiation, the inequality in (a). ■

Remark 1. A main use of Theorem 3.9 is to give both upper and lower bounds for B(x, x) when x is not an integer. When
x = m is a positive integer m,

B(m,m) =

[
(m − 1)!

]2

(2m − 1)!
.

etting x1 = x and x2 = ⌈x⌉ or x1 = ⌊x⌋ and x2 = x gives good bounds for B(x, x) using m = ⌊x⌋ or m = ⌈x⌉. We can also

take x1 =
k
2 , or x2 =

k
2 , where k is an odd integer, since B(k/2) can be written in terms of Γ

( 1
2

)
=

√
π . The bounds of

heorem 3.9 have an easier formulation when x = y and are often easier to compute, not depending on possibly Hurwitz’s
zeta function. A similar statement applies at the end of Remark 3 below as well for the case x ̸= y in relation to Corollary 1
elow.

heorem 3.10. Suppose x ≥ 3 and y > 0. Then

(a)

B(x, y) ≤
1
y

[(
1

1 + y

)x−1

+

1
2 (x − 1) ·

(
(1 + y)x−2

− 1
)

(y + 1)x−1 · (y + 2)

]
def.
= u1(x, y).

(20)

(b) If x ≥ 3 and y ≥ 3, then

B(x, y) ≤ min
{
u1(x, y), u1(y, x)

}
.

Proof. Since

B(x, y) =

∫ 1

tx−1(1 − t)y−1dt,

0

9
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e get

y · B(x, y) =

∫ 1

0
tx−1[y(1 − t)y−1]dt. (21)

pplying Lemma 2.5 with f (t) = tx−1 and

H(t) =

⎧⎨⎩
0 if t ≤ 0,
1 − (1 − t)y if 0 < t < 1,
1 if t ≥ 1,

(22)

nd using the fact that the expression in brackets in (21) is a probability measure on (0, 1) with corresponding pdf
H ′(t) = y(1 − t)y−1, 0 ≤ t ≤ 1, we find

L(t) =

∫ 1
0 (x − t)dH(t)
1 − H(t)

=
1 − t
y + 1

, 0 ≤ t ≤ 1

nd
q2(t) = (x − 1)(x − 2)(t + L(t))x−3

= (x − 1)(x − 2)
(
1 + ty
y + 1

)x−3

.

Thus,

L2 =
1
2

∫ 1

0
(x − 1)(x − 2)

(
1 + ty
y + 1

)x−3( 1 − t
y + 1

)2

· y(1 − t)y−1dt,

and

y · B(x, y) =

∫ b

a
f (t)dH(t) + L2

=

(
1

1 + y

)x−1

+

1
2 (x − 1)(x − 2)

(y + 1)x−1

∫ 1

0
(1 + yt)x−3

· y(1 − t)y+1dt.
(23)

ow (1+yt)x−3 is increasing in t , since x ≥ 3. Also, y(1−t)y+1 is decreasing in t . Applying the Chebyshev–Grüss inequality
to the integral in (23), we obtain

y · B(x, y) ≤
1

(1 + y)x−1 +

1
2 (x − 1)(x − 2)

(y + 1)x−1

(∫ 1

0
(1 + yt)x−3dt

)
·

(∫ 1

0
y(1 − t)y+1dt

)
=

1
(1 + y)x−1 +

1
2 (x − 1)

(y + 1)x−1 ·
1

(y + 2)
·
(
(1 + y)x−2

− 1
)
.

hich is the same as (20). This completes the proof of (a). Part (b) follows immediately from Part (a). ■

emark 2. Using the relation

B(x, y) =

(
(x + y + 2)(x + y + 1)(x + y)

(x + 2)(x + 1)(x)

)
· B(x + 3, y),

we can modify the bound in (20) to obtain an upper bound on B(x, y) for x > 0 and y > 0, by first using the theorem to
et an upper bound on B(x + 3, y).

heorem 3.11. For x ≥ 3 and y > 0,

(a)

B(x, y) ≥
1
y

[(
1

1 + y

)x−1

+

1
2 (x − 1)y

(y + 1)x−1(y + 2)

]
def.
= R1(x, y).

(b) For x ≥ 3 and y ≥ 3,

B(x, y) ≥ max
{
R1(x, y), R1(y, x)

}
.

Proof. The steps in the proof Theorem upper bound (20) are the same as the proof of Theorem above, except we use L1
of Lemma 2.5 instead of L and also we use q (t) = (x − 1)(x − 2)tx−3 instead of q (t). We omit details. ■
2 1 2

10
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Next, we present some inequalities for certain ratios of beta function values.

heorem 3.12. Suppose y > 0 and 0 ≤ x1 < x2 < ∞. Then

B(x2, y)
B(x1, y)

≤ xx22

(
1
x1

)x1( 1
x2 + y

)x2+y

(x1 + y)x1+y. (24)

Proof. Since B(x, y) =
∫ 1
0 tx−1(1 − t)y−1dt , taking a partial derivative, we get

∂B
∂x

=

∫ 1

0
(ln t) · tx−1(1 − t)y−1dt

=

(∫ 1

0

[
Γ (x + y)
Γ (x)Γ (y)

tx−1(1 − t)y−1
]

· ln t dt
)

· B(x, y).
(25)

Since ln t is a concave function of t for 0 < t < 1, Jensen’s inequality applied to the integral in (25) gives

∂B
∂x

≤

(
ln

(
x

x + y

))
· B(x, y).

Dividing by B(x, y) and then integrating from x = x1 to x = x2 we obtain

ln
(
B(x2, y)
B(x1, y)

)
≤ x2 ln x2 − x1 ln x1 − (x2 + y) ln(x2 + y) + (x1 + y) ln(x1 + y). (26)

xponentiation of both sides of (26) gives the upper bound in (24). ■

orollary 1. Suppose 0 < x1 ≤ x2 < ∞ and 0 < y1 ≤ y2 < ∞. Let

g(a, b, c) = bb
(
1
a

)a( 1
b + c

)b+c

(a + c)a+c, for a > 0, b > 0, and c > 0. (27)

Then:
B(x2, y2)
B(x1, y1)

≤
[
g(x1, x2, y2) · g(y1, y2, x1)

]
. (28)

Proof. Apply Theorem 3.12. Then

B(x2, y2) ≤ g(x1, y1, y2)B(x1, y2)
≤ g(x1, y1, y2)

[
g(y1, y2, x1) · B(x1, y1)

]
,

which is equivalent to (28). ■

Remark 3. The real value of Corollary 1 is to obtain bounds for B(x, y) when x and y are not positive integers. By choosing
either x1 = ⌊x⌋ and x2 = x or x1 = x and x2 = ⌈x⌉ and similarly for y1 and y2, we can obtain both upper and lower bounds
for B(x, y) using

B(m, n) =
(m − 1)!(n − 1)!
(m + n − 1)!

,

f m and n are integers. In this way, excellent bounds for B(x, y) are obtainable.

orollary 2. Suppose x ≥ 1, y ≥ 1 with x ≤ y. Let

u(x, y) =
1
y
xx

(
1

x + y

)x+y

(y + 1)y+1.

Then

B(x, y) ≤ u(x, y). (29)

Proof. The first half of (29) follows from B(x, y) = B(y, x) and Theorem 3.12. The second half holds iff u(x, y) ≤ u(y, x),
which is equivalent to(

x
x + 1

)x+1

<

(
y

y + 1

)y+1

,

hich follows from the fact that (t + 1)
[
ln

(
t

)]
is increasing in t, t ≥ 0. ■
t + 1
11
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heorem 3.13. Let 0 < x1 ≤ x2 < ∞. Then for y > 0,

B(x2, y)
B(x1, y)

≤

(
x1 + y
x2 + y

)y

. (30)

roof. Since

B(x, y) =

∫ 1

0
tx−1(1 − t)y−1dt.

Taking the partial derivative,

∂B
∂x

=

∫ 1

0
tx−1(1 − t)y−1 ln t dt.

Now ln t ≤ t − 1, 0 < t ≤ 1, so

∂B
∂x

≤

∫ 1

0
tx−1(1 − t)y−1(t − 1)dt

=

(
−y
x + y

)
· B(x, y).

which gives
∂B
∂x

B(x, y)
=

(
−y
x + y

)
.

(31)

ntegrating (31) form x = x1 to x = x2 and then exponentiating gives upper bound (30). ■

Remark 4. Earlier, in Theorem 3.12, we found upper bound (24):

B(x2, y)
B(x1, y)

≤ xx22

(
1
x1

)x1( 1
x2 + y

)x2+y

(x1 + y)x1+y.

It can be shown that this bound is always better than the upper bound in Theorem 3.13 above, using the fact that
(
1+

y
x

)x

is increasing in x > 0 for each value of y > 0. We omit the details here. However, the upper bound in (30) is much quicker
to compute.

Theorem 3.14. Let x > 0 and y > 0. then

B(x, y) ≥

(
x

x + y

)x

·

(
e−x

√
x

)
√
2π.

Proof. From 6.1.50 of Abramowitz & Stegun [16], p. 258, we have for x > 0:

lnΓ (x) ≥

(
x −

1
2

)
ln x − x +

1
2
ln(2π ),

hich gives

Γ (x) ≥ xx−1/2e−x
√
2π. (32)

lso, from 6.2.1 of Abramowitz & Stegun [16], p. 258, we have

B(x, y) =

∫
∞

0

tx−1

(1 + t)x+y dt.

Since e−t
≤

1
1 + t

, t ≥ 0, we obtain

B(x, y) ≥

∫
∞

0
tx−1e−t(x+y)dt

=

(
1

x + y

)x

Γ (x).
(33)

rom (32) and (33) we get the desired result. ■
12
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heorem 3.15. Suppose 0 < x ≤ y < ∞. Then

B(x, y) ≥
xxyy

(x + y)x+y ·

√
2π
x

. (34)

roof. From 6.1.50 of Abramowitz & Stegun [16], p. 258, we have for x > 0:

lnΓ (x) ≥

(
x −

1
2

)
ln x − x +

1
2
ln(2π ),

hich gives

Γ (x) ≥ xx−1/2e−x
√
2π. (35)

lso, from 6.2.1 of Abramowitz & Stegun [16], p. 258, we have

B(x, y) =

∫
∞

0

tx−1

(1 + t)x+y dt. (36)

ince ln(1 + t) is a concave function of t ≥ 0, for c ≥ 0,

ln(1 + t) ≤ ln(1 + c) +

(
t − c
1 + c

)
.

hich gives

1
1 + t

≥
1

1 + c
e

(
c − t
1 + c

)
.

Thus,

1
(1 + t)x+y ≥

1
(1 + c)x+y e

(
c − t
1 + c

)
(x+y)

.
(37)

nserting the RHS of (37) into the integral in (36) and integrating, we get

B(x, y) ≥
1

(1 + c)x+y e

(
x + y
1 + c

)
c

·

(
1 + c
x + y

)x

· Γ (x). (38)

pplying (35), we get

B(x, y) ≥

[
1

(1 + c)x+y e

(
x + y
1 + c

)
c

· e
−

(
x + y
1 + c

)
t ]

·

(
xx−1/2e−x

√
2π

)
.

(39)

imple differentiation of the RHS of (38) with respect to c maximizes the lower bound in (38). We get c =
x
y
as the best

choice. Substitution of this value of c into (39) and simplifying the resulting expression gives the lower bound in (34). ■

Theorem 3.16. For 0 < x1 < x2 < ∞,

B(x2, y)
B(x1, y)

≥
x1(x2 + y)
x2(x1 + y)

· xx22

(
1
x1

)x1( 1
x2 + y

)x2+y

(x1 + y)x1+y. (40)

roof. Since

B(x, y) =

∫ 1

0
tx−1(1 − t)y−1dt.

Taking the partial derivative,

∂B
=

∫ 1

tx−1(1 − t)y−1 ln t dt.

∂x 0

13
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∂B
∂x

=

∫ 1

0
tx−2(1 − t)y−1(t ln t) dt

=

{∫ 1

0

[
1

B(x − 1, y)
tx−2(1 − t)y−1

]
(t ln t) dt

}
· B(x − 1, y).

Since (t ln t) is a convex function of t , Jensen’s inequality and the integration formula∫ 1

0

1
B(x − 1, y)

tx−1(1 − t)y−1dt =
x − 1

x + y − 1
,

ives:
∂B
∂x

B(x, y)
≥ ln

(
x − 1

x + y − 1

)
.

(41)

ntegration of (41) from x = x1 to x = x2 and simplifying, we get

ln
(
B(x2, y)
B(x1, y)

)
≥ (x2 − 1) ln(x2 − 1) − (x1 − 1) ln(x1 − 1) − (x2 + y − 1) ln(x2 + y − 1)

+ (x1 + y − 1) ln(x1 + y − 1).
(42)

Exponentiation of (42) gives, for x2 > x1 > 1:

B(x2, y)
B(x1, y)

≥ (x2 − 1)x2−1
(

1
x1 − 1

)x1−1( 1
x2 + y − 1

)x2+y−1

(x1 + y − 1)x1+y−1.

sing B(x + 1, y) =
x

x + y
B(x, y), for x2 > x1 > 0, this is equivalent to

B(x2 + 1, y)
B(x1 + 1, y)

≥ xx22

(
1
x1

)x1( 1
x2 + y

)x2+y

(x1 + y)x1+y,

which gives,

B(x2 + 1, y)
B(x1 + 1, y)

≥

(
x1

x1 + y

)(
x2 + y
x2

)
xx22

(
1
x1

)x1( 1
x2 + y

)x2+y

(x1 + y)x1+y,

hich is bound (40). This completes the proof. ■

Next, we give another upper bound for
B(x2, y)
B(x1, y)

.

Theorem 3.17. Suppose 0 < x1 < x2 < ∞. Let

c = 1 +

y ln
(
x2 + y
x1 + y

)
x1 − x2

, a1 = ln c − 1, and a2 =
1
c
.

Then
B(x2, y)
B(x1, y)

≤ e(a1+a2)(x2−x1) ·

(
x1 + y
x2 + y

)a2y

. (43)

roof. Since

B(x, y) =

∫ 1

0
tx−1(1 − t)y−1dt.

Taking the partial derivative,

∂B
∂x

=

∫ 1

0
tx−1(1 − t)y−1 ln t dt.

Since ln t is a concave function of t , for 0 < t < 1, c > 0,

ln t ≤ (ln c − 1) +
t
,

c
14
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Table 1
Comparison of lower (LB) and upper (UB) bounds.

Theorems B(0.01, 0.01) = 199.9676 B(0.05, 0.2) = 24.6535 B(0.1, 0.8) = 10.3646 B(0.25, 3) = 2.8444 B(1.5, 1.5) = 0.3927 B(4, 8) = 0.0008

LB UB LB UB LB UB LB UB LB UB LB UB

Existing bounds

1.1 – – – – – – – – 0.1944 0.4444 – 0.0313
1.2 – – – – – – – – 0.3571 0.4444 – 0.0313
1.3 – – – – – – – – 0.3629 0.5384 0.0001 0.1035
1.4 – – – – – – – – 0.3889 0.4444 – 0.0313
1.5 – – – – – – – – 0.2469 0.4444 – 0.0313
1.6 – – – – – – – – 0.3333 0.4444 – 0.0313
1.7 – – – – – – – – 0.1667 – 0.0002 –
[4], 1st/2nd order 199.9675 199.9705 24.6415 24.7468 10.1063 10.8701 – – 0.3899 0.4044 – –

Proposed
bounds

3.1 192.1576 – 16.0714 – 2.9222 – 0.0156 – – – – –
3.2 197.9899 – 21.9665 – 7.0722 – 0.0975 – – – – –
3.3 1.9604 – 3.9286 – 4.1818 – 0.6500 – – – – –
3.4 195.4082 – 18.6585 – 4.0507 – 0.0259 – – – – –
3.5 – – – – – – – – – 1.0323 – 0.0268
3.6 – – – – – – – – – – – 0.0186
3.7a 101.0064 – 20.8701 – 10.2741 – 2.3257 – – – – –
3.8 – – – – – – – – – 0.5000 – 0.0022
3.10b – – – – – – – – – – – 0.0022
3.11a – – – – – – – – – – 0.0004 –
3.11b – – – – – – – – – – 0.0004 –
Cor - 2 – – – – – – – – – 0.4483 – 0.0014
3.14 24.6454 – 9.8388 – 5.7575 – 2.0562 – 0.1615 – 0.0003 –
3.15 24.7212 – 9.8918 – 5.7909 – 2.0766 – 0.2558 – 0.0006 –

which gives

ln t ≤ a1 + a2t. (44)

hus, from (44), we get

∂B
∂x

B(x, y)
≤

(
a1 + a2

(
x

x + y

))
.

Integration from x = x1 to x = x2 and simplifying gives, for all c > 0:

ln
(
B(x2, y)
B(x1, y)

)
≤ (a1 + a2)(x2 − x1) − a2y ln

(
x2 + y
x1 + y

)
. (45)

he value of c > 0 minimizing the RHS of (45) is found by easy differentiation to get

c = 1 +

y ln
(
x2 + y
x1 + y

)
x1 − x2

,

which is a number in (0, 1), since ln(1 + w) ≤ w for w > 0. Inserting this value of c into (45) and then exponentiating
nd simplifying, we get upper bound (43). ■

emark 5. If we proceed as in (27) we can get upper and lower bounds for R =
B(x2, y2)
B(x1, y1)

as done earlier, using any of

he upper or lower bounds for R given earlier, when x1 < x2, y1 < y2.

4. Numerical study

In this section, we conduct a numerical study at various values of x and y values. Table 1 compares lower and upper
bounds for the proposed theorems and some existing theorems. It can be clearly seen, in certain cases, our results
provide excellent approximations for B(x, y) and they are quite competitive with the bounds presented Dragomir et al. [1],
Alzer [2], Cerone [3], and Grenié & Molteni [4].

5. Discussion

In this paper, we have proposed various new inequalities and bounds for the beta function and some other related
special functions. It should be mentioned that the bounds for the beta function are reported in the literature (see, for
example, Dragomir et al. [1], Alzer [2], and Cerone [3]) can be used when x > 1 and y > 1. The lower bounds presented
in Theorems 3.1–3.4, and 3.7(a) are quite competitive with the lower bounds given in [4], 1st/2nd order. More specifically,
our results have an easier formulation when x = y and are often easier to compute, not depending on possibly Hurwitz’s
zeta function. As a result, our bounds are offered as a computationally simple alternative. In particular, the lower bound
of Theorem 3.4 becomes quite good as x and y approach zero. Our upper bounds in Theorems 3.6, 3.8, and 3.10(b) are
also quite competitive with the upper bounds of Dragomir et al. [1], Alzer [2], and Cerone [3]. When x = 4 and y = 8, for
15
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xample, the lower bounds obtained in Theorems 3.11, 3.14, and 3.15 beat the lower bounds in Theorems 1.3 & 1.7. In
ost cases, our new lower and upper bounds are quite competitive with the existing bounds in the literature. In addition,
e propose various inequalities for the ratio of beta functions. They are given in Theorems 3.9, 3.12, 3.13, 3.16, and 3.17.
ur proposed new inequalities for the ratio of beta function can be used in linear preferential attachment models, a
ertain type of stochastic urn process. In particular, the fraction P(k) of urns having k balls in the limit of long time is
(k+ a, γ )/B(k0 + a, γ − 1), for k ≥ k0. For more details, readers are referred to Medhi [17], Newman [18], and Dine [19].
sing our results, we can quickly find bounds on the P(k). We have also developed an R package, IneqBetaFun, which
an be found at https://github.com/suthakaranr/IneqBetaFun in which our theorems are implemented to allow readers to
alculate bounds.
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ppendix

The proposed bounds are implemented as an R package called IneqBetaFun, freely available on GitHub. For instance,
he bounds based on Theorems 3.1–3.17 and Corollaries 1 & 2 can be obtained as follows.

rm(list = ls())
library(devtools) # Make sure that the devtools library is loaded
install_github( " suthakaranr/IneqBetaFun " )

library(IneqBetaFun)
them_3_1(1/2, 1/2) # Theorem 3.1
them_3_2(1/2,1/2) # Theorem 3.2
them_3_3(1/2,1/2) # Theorem 3.3
them_3_4(1/2,1/2) # Theorem 3.4
them_3_5(2,2) # Theorem 3.5
them_3_6(2,2) # Theorem 3.6
them_3_7(0.25,0.5) # Theorem 3.7: Case 1
them_3_7(0.5,1) # Theorem 3.7: Case 2
them_3_8(2,2) # Theorem 3.8
them_3_10(4,2) # Theorem 3.10: Case 1
them_3_10(4,3.5) # Theorem 3.10: Case 2
them_3_11a(4,2) # Theorem 3.11: Case 1
them_3_11b(5,5) # Theorem 3.11: Case 2
corollary_2(1, 1.5) # Corollary 2
them_3_14(1,2) # Theorem 3.14
them_3_15(1,2) # Theorem 3.15

# Ratios of Beta Functions

them_3_9(0.5,0.75) # Theorem 3.9: Case 1: x1 <= x2
them_3_9(1.5,1) # Theorem 3.9: Case 2: x1 > x2
them_3_17(1, 1.5, 2) # Theorem 3.17
corollary_ratio_1(1, 1.5,2, 3) # Corollary 1
them_3_13(1, 1.5,2) # Theorem 3.13
them_3_16(1, 1.5,2) # Theorem 3.16
them_3_17(1, 1.5,2) # Theorem 3.17
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