
Environmental and Ecological Statistics (2022) 29:827–847
https://doi.org/10.1007/s10651-022-00548-1

Some efficient closed-form estimators of the parameters of
the generalized Pareto distribution

Steven G. From1 · Suthakaran Ratnasingam2

Received: 8 September 2021 / Revised: 4 August 2022 / Accepted: 16 August 2022 /
Published online: 12 September 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
In this paper, we consider several families of closed-form estimators of the two param-
eters of the Generalized Pareto Distribution (GPD). These estimators are easy to
compute and have high efficiency when compared to previously proposed methods.
We also consider some estimators which are not of closed-form. All methods are
based on certain order statistics. The proposed procedures are best for extreme values
of the shape parameters and sample sizes of 100 or larger. Monte Carlo simulations
are conducted to investigate the performance of the proposed parameter estimation
procedures. Our findings suggest that the proposed estimation methods are competi-
tive compared to the existing methods. We provide a real data application to illustrate
the utilization of the proposed methods in estimating the GPD parameters.

Keywords Elemental percentile method · Maximum likelihood · Method of
moments · Modified Cramér–Von Misses method · Order statistics · Probability
weighted moments · Product of spacings

1 Introduction

Let X1, X2, . . . , Xn be random sample from the two-parameter Generalized Pareto
Distribution (GPD) with the location parameter μ is assumed to be equal to zero. The
cumulative distribution function (cdf) is given by
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where k and σ are the shape and scale parameters respectively. The range of x is
0 ≤ x < ∞ for k ≤ 0 and 0 < x < δ, for k > 0, where δ = σ/k. The cdf is zero for
any value of x < 0. The corresponding probability density function (pdf) is

f (x; k, σ ) =
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(2)

The shapes of the GPD for various values of k are illustrated in Fig. 1. The quantile
function F−1(p; k, σ ) = x , the inverse function of p = F(x; k, σ ) is:

x = F−1(p; k, σ ) =

⎧
⎪⎪⎨

⎪⎪⎩

σ

k

(

1 − (1 − p)k
)

if k �= 0, σ > 0,

− σ ln(1 − p) if k = 0, σ > 0.

(3)

The problem considered here is the estimation of the GPD parameters k and σ .
The GPD has been used in applications that involve the modeling of exceedances
over a threshold, the distribution of extreme value statistics (such as the largest or
smallest values in a random sample), and is closely related to families of generalized
extremevaluedistributions, for example,Galambos (1981, 1984). It hasmanypractical

Fig. 1 The pdf (A) and cdf (B) of the GPD for various values of the shape parameter k
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applications in engineering design and hydrology, for example, Smith (1984), Hosking
et al. (1985), Van Montfort and Witter (1986), Castillo (1988), Castillo (1994), and
Walshaw (1990).

Most previous papers focused attention on the case −1/2 < k < 1/2 since many
practical applications involve this range of values for k. In addition, the large sample
theory is applicable for this range. However, more extreme values of k are also of
interest, as pointed out by Castillo and Hadi (1997). Cheng and Chou (2000a, b)
considered the estimation of σ when k is known. They obtain the BLUE (best linear
unbiased estimator) and ABLUE (asymptotically best linear unbiased estimator) of σ

when k is known.
In this paper, both k and σ are unknown parameters to be estimated. The GPD was

first discussed by Pickands (1975). They proposed estimators which are special cases
of the estimators considered by Castillo and Hadi (1997). Related papers are Castillo
and Hadi (1995a, b). The Maximum likelihood (MLE) estimation of the GPD has
been discussed by DuMouchel (1983), Davison (1984), Smith (1984, 1985), Hosking
and Wallis (1987), and Grimshaw (1993). Hosking and Wallis (1987) compared the
MLE to method of moments (MOM) estimation and probability weighted moments
estimation (PWM). These two estimation methods produce closed-form estimators of
k and σ . The MLE, MOM, and PWM estimation methods all have serious drawbacks.
The likelihood function for the MLE can be made infinite for k > 1 and Cramér’s
regularity conditions are not satisfied for all k values. In addition, the MLE procedure
may not converge. Even if the MLE exists, Hosking and Wallis (1987) demonstrated
that theMLEdoes notmanifest its best asymptotically normal property unless n > 500
and −1/2 < k < 1/2. Since Var(Xi ) = ∞ for k ≤ −1/2, the MOM and PWM do
not always exist.

In response to these drawbacks of the MLE, MOM, and PWM methods, Castillo
and Hadi (1997) proposed the elemental percentile method (EPM). Let X1,n ≤
X2,n ≤ · · · ≤ Xn,n denote the order statistics corresponding to the random sam-
ple X1, X2, . . . , Xn . Let Pi,n = i/(n + 1), i = 1, 2, . . . , n. By choosing any two
order statistics Xi,n and X j,n for i < j , the EPM method solves for k and σ in the
following two equations.

F(Xi,n; k, σ ) = Pi,n, (4)

and
F(X j,n; k, σ ) = Pj,n . (5)

In general, system (4)–(5) has no closed-form solution. Theorem 1 of Castillo and
Hadi (1997) details how to solve for k and σ in (4)–(5). Let δ = σ/k. Use the method
of bisection to solve for δ in the equation

Ci ln(1 − X j,n/δ) = C j ln(1 − Xi,n/δ), (6)

where Ci = ln(1 − Pi,n). If Xi,n <
Ci X j,n

C j
, we search for a root on the interval

(δ0, 0), where

δ0 = Xi,n X j,n(C j − Ci )
(
C j Xi,n − Ci X j,n

) . (7)
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If Xi,n >
Ci X j,n

C j
, then we search for root on the interval (X j,n, δ0). Let δ̂i, j denote

this root or solution. Then the estimators of k and σ are

k̂i, j =
ln

(

1 − Xi,n/δ̂i, j

)

Ci
.

and
σ̂i, j = k̂i, j δ̂i, j .

Algorithm1ofCastillo andHadi (1997) gives the details for defining k̂i, j and σ̂i, j in the
case where δ0 is not defined

(
C j Xi,n = Ci X j,n

)
in (6). Several methods for selecting

the values of i and j were considered by these authors. They reported their results for
the case i = 1, 2, . . . , n−1 and j = n. Thus, they obtained k̂1,n, k̂2,n, . . . , k̂n−1,n and
σ̂1,n, σ̂2,n, . . . , σ̂n−1,n . The EPM estimates of k and σ are

k̂E PM = median
{
k̂1,n, k̂2,n, . . . , k̂n−1,n

}
,

and
σ̂EPM = median

{
σ̂1,n, σ̂2,n, . . . , σ̂n−1,n

}
.

The choice j = n guarantees estimates of k and σ that are consistent with the observed
data X1, . . . , Xn , that is, for k > 0,

k̂i, j X j,n

σ̂i, j
≤ 1,

holds for j = n, i = 1, 2, . . . , n − 1. Thus, the EMP estimators do not suffer
a drawback of both MOM and PWM estimates. Namely, Castillo and Hadi (1997)
showed that, even if n = 100, the MOM and PWMmethods can produce estimates of
k and σ which yield a range of values of Xi that are not consistent with the data, in
almost half of all simulated data sets for some choices of k. The choice i = n/2 and
j = 3n/4 leads to an estimator discussed byPickands (1975). These are of closed-form
and are given by

k̂ p = 1

ln(2)
ln

(
Xn/2,n

X3n/4,n − Xn/2,n

)

. (8)

σ̂p = k̂ p

( (
Xn/2,n

)2

2Xn/2,n − X3n/4,n

)

. (9)

Further,Castillo andHadi (1997) compared theEPMestimators to theMOMandPWM
estimators on the basis of simulated root mean square error (RMSE). They found that
the EPM estimators are the best for extreme values of k, that is, for k < −0.4 and
k > 0.4. For −0.4 ≤ k ≤ 0.4, the MOM and PWM perform better. They found that
the MOM estimates have the smallest RMSE for 0 < k ≤ 0.4 and that PWM is best
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for −0.4 ≤ k ≤ 0. See Hosking and Wallis (1987) or Castillo and Hadi (1997) for
formulas to compute theMOMand PWMestimators. TheMOMand PWMestimators
are especially poor for extremely large and negative values of k (k = −1 and k = −2
in Table 2 of Castillo and Hadi (1997). There is no finite mean and variance for these
k values. As a result, the MOM and PWM estimators are particularly weak for very
large and negative values of k.

2 Proposed Estimators

In this section, we describe some new estimators of the GPD parameters. We consider
both estimators of closed-form and estimatorswhich are not of closed-form, but chosen
to minimize/maximize a certain function of the order statistics. The first four methods
(M1, M2, M3, and QM below) produce closed-form estimators. The last two methods
(POS and LCVM) produce estimators minimizing/maximizing a certain function of
the order statistics.

2.1 Method 1 (M1)

This method uses the EPMmethod but selects the two order statistics differently from
any of the selection schemes given under Algorithm 2 of Castillo and Hadi (1997). We
select the two order statistics to guarantee a closed-form solution to (4) and (5). We
do this several times before taking the median. Also, we do not use nearly as many
k̂i, j and σ̂i, j values. In fact, regardless of n, the sample size, we never use more than
5 or 10 order statistics.

Let 0 < Q < 1, and let P = 1 − (1 − Q)1/2. Then 0 < P < Q < 1. Let n(1) =
nint

(
(n + 1)P

)
and n(2) = nint

(
(n + 1)Q

)
, where ‘nint’ stands for nearest integer.

Apply the EPM method and solve for k, σ in the equations F(Xn(1),n; k, σ ) = P and
F(Xn(2),n; k, σ ) = Q. We obtain k = kP,Q and σ = σP,Q , where

kP,Q =
ln

(

Xn(2),n/Xn(1),n − 1

)

ln(1 − P)
,

σP,Q = δP,Q · kP,Q, and

δP,Q =
(
Xn(1),n

)2

(

2Xn(1),n − Xn(2),n

) .

If P = 1/2, Q = 3/4, we obtain (Pickands 1975) estimators given by (8)–(9), as a
special case. To define the Method 1 (M1) estimators of k and σ , we compute kP,Q

and σP,Q for m different ordered pairs (P1, Q1), (P2, Q2), . . . , (Pm, Qm) satisfying
0 < Qi < 1 and Pi = 1 − (1 − Qi )

1/2, i = 1, 2, . . . ,m. We shall discuss later how
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to choose the Qi values. Let k̂
(i)
1 = kPi ,Qi and σ̂

(i)
1 = σPi ,Qi . Let

k̂(0)
1 = median

{
k̂(1)
1 , . . . , k̂(m)

1

}
, and

σ̂
(0)
1 = median

{
σ̂

(1)
1 , . . . , σ̂

(m)
1

}
.

If these are consistent with the data, we are done. Otherwise, we must ‘adjust’ these
estimators to be consistent with the range of the data, if k̂(0)

1 > 0. We choose m = 5
with Q1 = 0.50, Q2 = 0.60, Q3 = 0.75, Q4 = 0.85 and Q5 = n/(n + 1). There
is nothing special about these values. Numerous numerical studies have found that
any selection scheme for choosing Qi values which picks more or less equally-spaced
values in the interval [0.50, 1]works well. Note that (P3, Q3) corresponds to Pickands
(1975) estimator (since P3 = 1/2), and that (P5, Q5) is a value (or close to a value)
used by the EPM method, and guarantees that at least one pair (Pi , Qi ) will produce
estimators consistent with the data. Let

W1 = k̂(0)
1 Xn(m),n

σ̂
(0)
1

= k̂(0)
1 Xn,n

σ̂
(0)
1

.

The M1 estimator of k is

k̂1 =

⎧
⎪⎨

⎪⎩

k̂(0)
1 if W1 < 1,

k̂(m)
1 if W1 ≥ 1.

The M1 estimator of σ is

σ̂1 =

⎧
⎪⎨

⎪⎩

σ̂
(0)
1 if W1 < 1,

σ̂
(m)
1 if W1 ≥ 1.

Thus, k̂(m)
1 = k̂(5)

1 based upon the largest order statistics ‘adjust’ the estimator, if
necessary (W1 ≥ 1), to be consistent with the data. Thus, M1 produces m different
closed-form estimates of k and σ for each selection of Q1, . . . , Qm .

2.2 Method 2 (M2)

This method is the same as M1 except we use only the m largest order statistics. For
large positive values of k, this will produce more efficient estimators than M1, as will
be seen later. It is believed that the EPM method of Castillo and Hadi (1997) utilizes
the largest order statistics too much for k < 0, but this is an advantage for k > 0,
hence the use of the largest order statistics only by M2. Again, we choose m = 5.
Let Qi = (n − m + i)/(n + 1), i = 1, 2, . . . ,m, Pi = 1 − (1 − Qi )

1/2. Note
that Qm = n/(n + 1), so that again, at least one pair (Pi , Qi ) will produce estimates
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consistent with the data. Let

k̂(0)
2 = median

{
k̂(1)
2 , . . . , k̂(m)

2

}
, and

σ̂
(0)
2 = median

{
σ̂

(1)
2 , . . . , σ̂

(m)
2

}
.

where k̂(i)
2 = kPi ,Qi , σ̂

(i)
2 = σPi ,Qi . Let

W2 = k̂(0)
2 Xn,n

σ̂
(0)
2

.

The M2 estimator of k is

k̂2 =

⎧
⎪⎨

⎪⎩

k̂(0)
2 if W2 < 1,

k̂(m)
2 if W2 ≥ 1,

The M2 estimator of σ is

σ̂2 =

⎧
⎪⎨

⎪⎩

σ̂
(0)
2 if W2 < 1,

σ̂
(m)
2 if W2 ≥ 1.

2.3 Method 3 (M3)

This method is a hybrid method based on M1 and M2 estimates. It can be seen that,
overall, this method is the most efficient of the closed-form estimation methods con-
sidered, over a wide range of k values. The M3 estimator of k is the average of the M1
and M2 estimators of k

k̂3 = 1

2
(k̂1 + k̂2). (10)

Let

σ̂
(0)
3 =

⎧
⎪⎨

⎪⎩

σ̂1 if k̂1 ≤ 1
4 ,

1
2

(
σ̂1 + σ̂2

)
if k̂1 > 1

4 .

(11)

Let

W3 = k̂3Xn,n

σ̂
(0)
3

.

The M3 estimator of σ is

σ̂3 =

⎧
⎪⎨

⎪⎩

σ̂
(0)
3 if W3 < 1,

1
2

(
σ̂1 + σ̂2

)
if W3 ≥ 1.

(12)

Thus, the adjustment of the estimator of σ is made only if k̂1 ≤ 1/4 and W3 < 1. It
should be noted that the substitution of k̂3 for k̂1 in (11) produces biases andMSEs that
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are very similar to (11) inmost cases, with the exception that this substitution produces
slightly higher biases and MSEs than (11) for large negative values of k. Many other
averaging schemes were tried, but none consistently produced lower biases/MSEs for
all values of k and σ , and for all n. There are undoubtedly better rules, but the one
presented here is very efficient as well as easy to program and compute.

2.4 Method QM

The fourth closed-form estimator method is also based on the EPM, but in a uniquely
different way. The relationship between Pi and Qi is different. Again, we choose
0 < Q1 < Q2 < · · · < Qm < 1 with Qm = n/(n + 1). Instead, we now require

Pi = 1 − (1 − Qi )
1/3, i = 1, 2, . . . ,m. (13)

The cube root of (1−Qi ) is used instead of the square root. This will lead to estimates
that are the roots of quadratic equations. For this reason, we call the following method
as the quadratic method (QM). We use the same basic procedure as discussed in
Method M1, except we require Pi and Qi to satisfy (13). To obtain m estimates of k
and σ , we substitute Pi for P and Qi for Q in the following equations. Let 0 < Q <

1, P = 1 − (1 − Q)1/3. Let n(1) = nint{(n + 1)P} and n(2) = nint{(n + 1)Q}. We
solve the EPM equations for k and σ , as done in (4) and (5): F(Xn(1),n; k, σ ) = P
and F(Xn(2),n; k, σ ) = Q. Let Y1 = Xn(1),n, Y2 = Xn(2),n, δ = σ/k. Then

ln

(

1 − Y1
δ

)

= k ln(1 − P), (14)

and

ln

(

1 − Y2
δ

)

= 3k ln(1 − P). (15)

Exponentiating and simplifying, we obtain

1 − Y2
δ

=
(

1 − Y1
δ

)3

or
(−3Y1 + Y2) δ2 + (3Y 2

1 ) δ − Y 3
1 = 0, (16)

with roots

δ = δ1 =
−3Y 2

1 +
√

4Y 3
1 Y2 − 3Y 4

1

2(Y2 − 3Y1)
, (17)

and

δ = δ2 =
−3Y 2

1 −
√

4Y 3
1 Y2 − 3Y 4

1

2(Y2 − 3Y1)
. (18)

To determine whether we use (17) or (18) we must specify two cases.
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Fig. 2 Case 1

Case 1

Y2 − 3Y1 > 0. Then δ1 > 0 and δ2 < 0. Let c1 = ln(1 − P) and c2 = ln(1 − Q).
Then 3c1/c2 = 1, since P = 1 − (1 − Q)1/3. Also, Y2 > 3Y1 gives Y1 < c1Y2/c2.
Thus, the EPM method chooses the root δ in (16) to satisfy δ ∈ (δ0, 0), which means
we must choose δ = δ2, the negative root. Let g(δ) = (Y2 − 3Y1)δ2 + (3Y 2

1 )δ − Y 3
1 .

Let δ̂ = −3Y 2
1 /

[
2(Y2 − 3Y1

]
. For Case 1, a graph of g(δ) vs δ is helpful and it is

sketched in Fig. 2.

Case 2

Y2 − 3Y1 < 0. First of all, let’s show that δ1 ≤ Y2. By the EPM method, we will then
have that δ2 > Y2, since δ2 is the only other root. After some algebra, δ1 ≤ Y2 holds
iff

−3 + √
4w − 3 ≥ 2w(w − 3), 1 ≤ w ≤ 3, (19)

wherew = Y2/Y1. Let h(w) = −3+√
4w − 3−2w(w−3) forw ∈ [1, 3]. Note that

h(w) is a concave function since its second derivative is negative. Thatmeans h(w) has
a unique maximum, which is at 7/4. Since h(1) = 2 < h(7/4), and h(3) = 0, we get
h(w) ≥ h(1) = 2 for w ∈ [1, 7/4], and h(w) ≥ h(3) = 0 for w ∈ [7/4, 3]. Hence,
h(w) is non-negative for w ∈ [1, 3]. So we get −3 + √

4w − 3 ≥ 2w(w − 3), 1 ≤
w ≤ 3, as desired. Thus, δ1 ≤ Y2 holds. Thus, δ2 > Y2 must hold and we choose
δ = δ2 again. A graph of g(δ) for Case 2 is shown in Fig. 3.

Cases 1 and 2 above establish that the estimator of δ is

δ∗
P,Q =

−3Y 2
1 −

√

4Y 3
1 Y2 − 3Y 4

1

2(Y2 − 3Y1)
. (20)
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Fig. 3 Case 2

The discriminant
(
4Y 3

1 Y2−3Y 4
1

)
will never be negative, since 4Y 3

1 Y2 > 4Y 4
1 > 3Y 4

1 >

0. Thus, with probability one, δ∗
P,Q will exist, since P

(
Y2 − 3Y1 = 0

) = 0, for each
choice of (Pi , Qi ), i = 1, . . . ,m. After obtaining δ∗

P,Q , we obtain k∗
P,Q from either

(14) or (15), from which we obtain σ ∗
P,Q as σ ∗

P,Q = k∗
P,Q δ∗

P,Q .
We use the same choices for Qi as in Method M1. Let m = 5, Q1 = 0.50, Q2 =

0.60, Q3 = 0.75, Q4 = 0.85, Q5 = n/(n + 1). Let k̂∗
i = k∗

Pi ,Qi
, σ̂ ∗

i = σ ∗
Pi ,Qi

. Let

k̂(0)
4 = median

{
k̂∗
1 , . . . , k̂

∗
m

}
, and

σ̂
(0)
4 = median

{
σ̂ ∗
1 , . . . , σ̂ ∗

m

}
.

Let W4 = k̂(0)
4 Xn,n

σ̂
(0)
4

. The QM estimates of k and σ are:

k̂4 =
{
k̂(0)
4 if W4 < 1,

k̂∗
m if W4 ≥ 1,

σ̂4 =
{

σ̂
(0)
4 if W4 < 1,

σ̂ ∗
m if W4 ≥ 1.

The M2 version of QM was also considered but did not perform better than M2 itself,
so we do not consider the use of the m largest order statistics in this case.
Next, we consider two estimation methods that do not lead to closed-form estimates
of k and σ , but compare favorably to the other estimators discussed here.
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2.5 Method POS

This method is based on a certain variation of a product of spacings (POS). Choose k
andσ whichmaximize theproduct of spacings (uniformdistributionon (0,1) spacings):

D1 =
n+1∏

i=1

(

Ai − Ai−1

)

, (21)

where Ai = F(Xi,n; k, σ ), i = 1, . . . , n − 1, A0 = 0 and An+1 = 1. The quantities
Ai − Ai−1 in (21) have the distribution of the spacings from a uniform distribution
on (0, 1), if k and σ are the true values of the parameters. To avoid computational
difficulties, it ismore convenient tomaximize ln(D1), or, equivalently,minimizeminus
ln(D1). It is worth noting that if values of k and σ which are inconsistent with the
sample data are substituted into D1, then D1 = 0, with ln(D1) = −∞, producing
a minimum, rather than a maximum value. Thus, special care must be taken in any
minimization or maximization routine to avoid values of k and σ which are infeasible
(inconsistent with the data). In the numerical studies of the next section, we employ
the simulated annealing algorithm (SANN; Belisle 1992) to obtain estimates. The
optimization problem based on the SANN algorithm requires only function values.
Further, it works effectively with functions that are not differentiable. This avoids
having to compute the first and second derivatives of D1 with respect to k and σ , which
will not always exist for k > 0. The M1 estimators were used as initial estimates of
k and σ . The numerical optimization can be easily done using the function optim()
from the base package in R. All these points are applicable for the computation of the
LCVM estimates below.

2.6 Method LCVM

This method minimizes a logarithmic version of the well-known Cramér–Von Mises
distance measure, hence, we call it the Logarithmic Cramér–Von Mises method
(LCVM). Choose k and σ minimizing

D2 =
n∑

i=1

(

Bi − Ci

)2

, (22)

where Bi = ln
(
F(Xi,n, k, σ )

)
,Ci = ln

(
i/(n + 1)

)
, i = 1, 2, . . . , n. Again, the

M1 method provides the initial estimates of k and σ . It is worth noting that if the
current values of k and σ are infeasible, we replace D2 with a very large positive
number. Alternatively, a penalty function approach could be used. It should be noted
that the usualminimumdistance estimators, such asCramér–VonMises,Kolmogorov–
Simirnov and Anderson–Darling estimators were also considered, but did not perform
well as the POS and LCVM estimators. Distance measures based upon Shannon’s
entropy (of various orders) and Gini diversity were also considered, but they did not
have lower biases and MSEs than POS or LCVM and were often significantly worse.
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3 Numerical Comparisons

In this section, we present the estimated root mean squared error (RMSE) of the
estimators of k and σ for all seven methods: EPM of Castillo and Hadi (1997), M1,
M2,M3, QM, POS, and LCVM.We use the inverse cdf method to generate all pseudo-
random variates based on equation (3). In order to obtain seven sets of estimators of k
and σ , we generate 2000 random samples for each combination of n, k and σ . Without
loss of generality, we let σ = 1 throughout the simulation study. We use many of the
same combinations of n, k, and σ as Castillo and Hadi (1997), but we also include a
few additional cases. Tables 1 and 2 present the RMSEs for the estimation of k and σ

respectively. Further, we have developed an R package, EfficientClosedGPD, which
can be found at https://github.com/suthakaranr/EfficientClosedGPD in which all six
methods are implemented to allow readers to estimate parameters of the Generalized
Pareto Distribution.

From Tables 1 and 2, several observations can be made:

• For the estimationof k, theM3estimator outperforms theEPMestimator ofCastillo
andHadi (1997), especially for k < 0 and n ≥ 50. However, for k ≥ 0 and n ≥ 50,
the EPM estimator performs better than the M3 estimator. Thus, the M3 method
is recommended for extreme values of k and n ≥ 50, being highly efficient and of
closed-form.

• For small n (for example, n = 15), the EPM method performs significantly better
than M3 in the estimation of k.

• For the estimation of k and σ , POS performs slightly better or as well as EPM,
and is significantly better for n ≥ 50.

• For the estimation of σ , EPM performs slightly better or as well as M3, and is
significantly better for small n.

• For extreme negative values of k, POS and LCVM perform the best. However, the
performance of QM is by far the best for k ≤ −3; see Tables 4 and 5. However,
QM performs poorly for k > −1.

• For the estimation of k, the LCVM performs significantly better than EPM for
n ≥ 50. For small n (for example, n = 15), the EPMmethod performs better than
LCVM.

• For the estimation of σ , EPM performs slightly better than LCVM, however,
LCVM requires only one call to a minimization routine.

• When comparing the RMSE of M3 to the RMSEs of M1 and M2, we can see that
for k < 0, in almost every case, the hybrid method M3 beats both M1 and M2.
For the estimation of σ , for n ≥ 50, M1 is better than M2 for k ≤ −1/4, while the
opposite is true for k > −1/4. This motivated the M3 method, and is the reason
σ̂

(0)
3 given by (11) earlier was defined the way that it was.

• Despite the fact that the biases are not presented, the EPM method generally has
slightly smaller biases. In most cases, the bias comparisons reflect the RMSE
comparisons. In cases where EPM and M3 have equal or nearly equal RMSEs,
EPM usually has slightly smaller bias. Otherwise, no discernible pattern of biases
was found.
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Table 1 RMSE of k estimators

Method
n k EPM M1 M2 M3 QM POS LCVM

15 −2.00 1.1665 1.2063 1.2038 1.0454 1.2372 0.9834 1.0949

−1.00 0.8082 1.0353 1.0272 0.8856 1.2411 0.7108 0.8575

−0.50 0.6889 1.1028 1.0886 0.9517 1.3836 0.6005 0.7564

−0.25 0.6231 1.1357 1.1380 0.9108 1.4924 0.5337 0.7136

0.00 0.6007 1.3402 1.1744 1.0076 1.5918 0.4773 0.6916

0.25 0.5842 1.3607 1.1997 1.0896 1.6904 0.4431 0.6500

0.50 0.5902 1.3853 1.2601 1.1632 1.7861 0.4004 0.6327

1.00 0.6326 1.5957 1.3849 1.2837 2.0017 0.4017 0.6905

2.00 0.8632 1.8682 1.6753 1.5114 2.3761 0.5577 0.8802

3.00 1.1253 2.2132 1.9848 1.9268 2.8551 0.9799 1.0844

50 −2.00 0.6304 0.6223 0.7641 0.5442 0.6043 0.4686 0.5474

−1.00 0.4542 0.4571 0.4393 0.3596 0.4759 0.3350 0.4278

−0.50 0.3793 0.4355 0.3272 0.2961 0.5127 0.2735 0.3486

−0.25 0.3501 0.4783 0.2962 0.3023 0.5998 0.2370 0.3308

0.00 0.3114 0.5278 0.2781 0.3267 0.6748 0.2140 0.2985

0.25 0.3016 0.6088 0.2725 0.3374 0.7407 0.1829 0.2891

0.50 0.3115 0.6674 0.2666 0.3689 0.8030 0.1724 0.2710

1.00 0.3284 0.7390 0.3142 0.4407 0.8842 0.1748 0.2939

2.00 0.4458 0.8139 0.4750 0.5479 1.0387 0.2868 0.4108

3.00 0.5958 0.9930 0.6478 0.7147 1.2283 0.5666 0.5633

100 −2.00 0.4294 0.4352 0.6147 0.4047 0.4349 0.3226 0.3926

−1.00 0.3139 0.3215 0.3575 0.2527 0.3374 0.2254 0.2995

−0.50 0.2617 0.2959 0.2459 0.2093 0.3480 0.1796 0.2488

−0.25 0.2451 0.3316 0.2029 0.2005 0.3934 0.1614 0.2212

0.00 0.2267 0.4182 0.1746 0.2230 0.4678 0.1350 0.2037

0.25 0.2109 0.4771 0.1561 0.2437 0.5388 0.1113 0.1906

0.50 0.2135 0.5306 0.1596 0.2744 0.5905 0.1035 0.1918

1.00 0.2323 0.5777 0.1790 0.3106 0.6475 0.1188 0.2052

2.00 0.3184 0.6702 0.2919 0.3816 0.7288 0.2114 0.2791

3.00 0.4253 0.7650 0.4140 0.4914 0.8420 0.4043 0.4226

200 −2.00 0.3247 0.3180 0.5119 0.3388 0.3061 0.2180 0.2680

−1.00 0.2350 0.2294 0.2910 0.2054 0.2402 0.1512 0.2038

−0.50 0.1961 0.1986 0.1939 0.1491 0.2186 0.1189 0.1817

−0.25 0.1758 0.2081 0.1497 0.1305 0.2512 0.1025 0.1670
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Table 1 continued

Method
n k EPM M1 M2 M3 QM POS LCVM

0.00 0.1692 0.2675 0.1198 0.1411 0.3213 0.0864 0.1462

0.25 0.1479 0.3061 0.1026 0.1611 0.3728 0.0760 0.1305

0.50 0.1492 0.3510 0.0959 0.1779 0.4133 0.0665 0.1310

1.00 0.1648 0.3970 0.1184 0.2169 0.4616 0.0837 0.1379

2.00 0.2216 0.4160 0.2123 0.2619 0.5164 0.1450 0.1838

3.00 0.2916 0.4945 0.3030 0.3315 0.5962 0.3086 0.2865

• Table 3 compares M1 and M3 estimators to the estimators of Pickands (1975), see
(8)–(9): We see that M3 significantly improves upon the estimator of Pickands,
especially for k < 0, and uses the Pickands estimators.

• None of the methods in this paper are outlier robust, since all methods use the
largest order statistics. It should be mentioned that the choice Q1 = 0.5, Q2 =
0.6, Q3 = 0.75, Q4 = 0.8 and Q5 = 0.85 performs well in methodsM1,M3, and
QM, but is about 10% less efficient than the Qi values used for this paper. Thus,
these closed-form estimators are easily adapted to the possible undue influence
of outliers. Tables 4 and 5 below give the RMSE for k = −3 and k = −5
for the four closed-form methods (M1, M2, M3, ad QM) for completeness. As
we mentioned earlier, these results are based on 2000 simulated data sets. No
computational problems were experienced for these four methods, even for k =
−5,−10, although MSEs rapidly increase, since the GPD is extremely heavy-
tailed for every large and negative values of k.

According to Tables 4 and 5, we see that M1 and QM are the best for k ≤ −3,
especially for estimating σ . These values of k correspond to distributions having
decreasing failure rate (DFR), that is, the failure rate functions

r(x; k, σ ) = f (x; k, σ )

1 − F(x; k, σ )
,

where f (·) and F(·) are given by (2) and (1), is decreasing in x . Such distributions
have ‘fractal-like’ behavior and are being used in a growing number of fields. For
these types of distributions, M1 and QM are the best.

4 Application

In this section, the proposed methods have been applied to a real-world data set to
evaluate the performance of the parameter estimation procedures. We fit the GPD
to the Bilbao waves data used in Castillo and Hadi (1997). The data measures zero-
crossing hourlymean periods (in seconds) of the sea waves in a Bilbao buoy in January
1997. One purpose of the data is to investigate the influence of periods on beach
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Table 2 RMSE of σ estimators

Method
n k EPM M1 M2 M3 QM POS LCVM

15 −2.00 1.2065 1.2218 2.6398 1.0861 1.5205 1.4194 0.8241

−1.00 0.7599 1.0441 1.6076 0.8467 1.1987 0.9895 0.6903

−0.50 0.6503 0.9963 1.2765 1.0139 1.1501 0.8185 0.6238

−0.25 0.5625 0.9269 1.1920 0.8331 1.1525 0.6745 0.6108

0.00 0.5273 0.9384 1.1751 0.8644 1.1245 0.5963 0.5854

0.25 0.5116 0.8804 1.0526 0.8740 1.1201 0.5384 0.5659

0.50 0.4722 0.8805 1.0365 0.8265 1.0982 0.4495 0.5550

1.00 0.4342 0.8094 0.8618 0.7761 1.0449 0.3445 0.5314

2.00 0.3869 0.7149 0.7307 0.6594 0.9310 0.2898 0.5412

3.00 0.3682 0.6271 0.6482 0.6051 0.8601 0.3301 0.4645

50 −2.00 0.4425 0.4646 1.4939 0.4414 0.4329 0.4660 0.4840

−1.00 0.3562 0.3595 0.6054 0.3679 0.3572 0.3535 0.4562

−0.50 0.3116 0.3448 0.4404 0.2999 0.3645 0.3152 0.4055

−0.25 0.2772 0.3383 0.3937 0.2915 0.3892 0.2901 0.3905

0.00 0.2687 0.3771 0.3677 0.2786 0.4123 0.2651 0.3702

0.25 0.2605 0.3861 0.3272 0.2826 0.4198 0.2314 0.3675

0.50 0.2387 0.3782 0.3015 0.2723 0.4249 0.2062 0.3514

1.00 0.2224 0.3660 0.2650 0.2632 0.4116 0.1676 0.3472

2.00 0.2023 0.3245 0.2295 0.2423 0.3802 0.1467 0.3225

3.00 0.1928 0.2978 0.2148 0.2196 0.3568 0.1866 0.2463

100 −2.00 0.3185 0.3389 1.1425 0.3333 0.2982 0.2856 0.3513

−1.00 0.2529 0.2541 0.4988 0.2582 0.2450 0.2311 0.3153

−0.50 0.2262 0.2405 0.3293 0.2220 0.2408 0.1982 0.2990

−0.25 0.2082 0.2514 0.2954 0.2090 0.2494 0.1861 0.2798

0.00 0.2017 0.2674 0.2415 0.1956 0.2651 0.1651 0.2634

0.25 0.1853 0.2780 0.2037 0.1942 0.2798 0.1445 0.2515

0.50 0.1729 0.2860 0.1936 0.1894 0.2856 0.1307 0.2520

1.00 0.1602 0.2599 0.1636 0.1784 0.2778 0.1185 0.2403

2.00 0.1449 0.2339 0.1463 0.1583 0.2554 0.1034 0.2252

3.00 0.1315 0.2138 0.1446 0.1528 0.2391 0.1407 0.1711

200 −2.00 0.2216 0.2186 1.0607 0.2217 0.2030 0.1906 0.2469

−1.00 0.1790 0.1766 0.4359 0.1711 0.1705 0.1549 0.2283

−0.50 0.1617 0.1634 0.2958 0.1613 0.1591 0.1328 0.2091

−0.25 0.1463 0.1550 0.2285 0.1485 0.1644 0.1229 0.1988

123



842 Environmental and Ecological Statistics (2022) 29:827–847

Table 2 continued

Method
n k EPM M1 M2 M3 QM POS LCVM

0.00 0.1366 0.1594 0.1710 0.1387 0.1810 0.1092 0.1828

0.25 0.1260 0.1766 0.1474 0.1276 0.1894 0.1004 0.1771

0.50 0.1183 0.1829 0.1317 0.1226 0.1928 0.0892 0.1782

1.00 0.1117 0.1813 0.1123 0.1151 0.1912 0.0841 0.1563

2.00 0.1005 0.1619 0.1035 0.1111 0.1764 0.0722 0.1540

3.00 0.0957 0.1455 0.1043 0.0996 0.1663 0.1015 0.1192

Table 3 RMSE values for k and σ estimators

Estimator of k Estimator of σ

n k Pickands M1 M3 Pickands M1 M3

100 −2 0.5670 0.4399 0.4146 0.4347 0.3325 0.3325

50 −1 0.6194 0.4633 0.3609 0.4558 0.3692 0.3570

15 −0.5 1.0448 1.1456 0.9665 0.9437 0.9687 0.9126

200 0 0.2613 0.2638 0.1433 0.1707 0.1704 0.1323

50 0.5 0.5034 0.6657 0.3708 0.3102 0.3805 0.2767

100 1 0.3588 0.5821 0.3133 0.1998 0.2649 0.1742

200 2 0.2878 0.4293 0.2576 0.1220 0.1554 0.1057

Table 4 Estimators for k Method
k n M1 M2 M3 QM

−3 15 1.5181 1.5385 1.3759 1.4144

50 0.8152 1.0987 0.7984 0.7727

100 0.5584 0.9079 0.5874 0.5293

200 0.3931 0.7644 0.4629 0.3783

−5 15 2.2590 2.3296 2.0876 2.0514

50 1.2248 1.8065 1.2689 1.1327

100 0.8232 1.5052 0.9401 0.7711

200 0.5820 1.2711 0.7481 0.5487

morphodynamics and other problems related to the right tail. Only the 197 observations
with periods above 7swere taken into consideration. In order tomake a fair comparison
with the EPM method developed by Castillo and Hadi (1997), we model these data
by the GPD with thresholds at u = 7, 7.5, 8, 8.5, 9, and 9.5. Similar to Castillo
and Hadi (1997), the goodness-of-fit of each estimation procedure is assessed by the
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Table 5 Estimators for σ Method
k n M1 M2 M3 QM

−3 15 1.7951 5.4333 2.0311 1.7962

50 0.6066 3.2935 0.6029 0.5341

100 0.4259 2.6281 0.4233 0.3591

200 0.2744 2.8588 0.2803 0.2367

−5 15 5.4715 45.4132 9.4836 5.0573

50 1.1307 36.0548 1.1222 0.8371

100 0.7217 19.6948 0.6905 0.5276

200 0.4229 24.4394 0.4342 0.3225

average scaled absolute error (ASAE). The ASAE is defined below.

ASAE = 1

n

n∑

i=1

|xi,n − x̂i,n |
(
xn,n − x1,n

) , (23)

where

x̂i,n = σ̂

k̂

[

1 − (
1 − pi,n

)k̂
]

.

In general, the best method is the one with the minimum ASAE value. Let u be
a given threshold. If X is a GPD(k, σ ), then X − u given that X > u for any u is a
GPD(k, σ − ku). Let m be a number of exceedances over the threshold value u. First,
we compute ASAEs for all seven methods at various threshold levels. The results are
summarized in Table 6. For instance, when the threshold u = 7, the ASAE for the
EPM is 0.0317. It is evident that methods M1, M2, and M3 produce smaller ASAEs.
When the threshold u ≥ 8, the LCVM method yields smaller ASAEs than the EMP
method. Next, we compute the standard errors through bootstrap samples for all seven
estimation methods at various threshold values of u. The results are based on 1000
iterations and they are summarized in Tables 7 and 8. For example, when the threshold
u = 7, the EPM method estimate of k is 0.8612 with a standard error of 0.0051. The
M1 estimates are similar to the EPM estimates except for the threshold value u = 9.
Further, we fit the GPD to the Bilbao waves data with u = 0. The estimated GPD
parameters based on all seven methods and corresponding ASAEs are given in Table
9. According to Table 9, the methodM1 yields smallest ASAEs, followed by QM. The
method QM has smaller ASAEs than the EPM method. We observe that the methods
POS, LCVM, and EPM have comparable ASAEs. In comparison to the existing EPM
method, our proposed estimation methods including M1, M3, QM, POS, and LCVM,
provide the lowest ASAE values. Moreover, the estimated densities based on all seven
methods for the sea waves data are sketched in Fig. 4.
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Table 6 ASAEs for seven estimations methods

u m M1 M2 M3 QM POS LCVM EPM

7 179 0.0317 0.0241 0.0265 0.0217 0.0317 0.0584 0.0317

7.5 154 0.0134 0.0197 0.0136 0.0139 0.1085 0.0214 0.0134

8 106 0.0210 0.0392 0.0290 0.0176 0.0210 0.0131 0.0210

8.5 69 0.0480 0.0348 0.0386 0.0194 0.0480 0.0471 0.0480

9 41 0.0545 0.0432 0.0478 0.0640 0.1903 0.0341 0.0666

9.5 17 0.0754 0.1070 0.0768 0.0628 0.1227 0.0742 0.0754

Table 7 Estimators for k at various thresholds u and corresponding standard errors in parentheses

u m M1 M2 M3 QM POS LCVM EPM

7 179 0.8612 0.7494 0.8053 0.8276 0.8612 1.0328 0.8612

(0.0126) (0.0035) (0.0063) (0.0185) (0.0020) (0.0094) (0.0051)

7.5 154 0.5539 0.7028 0.6284 0.5997 0.4346 0.7332 0.5539

(0.0123) (0.0040) (0.0064) (0.0136 (0.0021) (0.0108) (0.0055)

8 106 0.5848 0.8791 0.7319 0.7636 0.5848 0.6616 0.5848

(0.0152) (0.0052) (0.0083) (0.0185) (0.0027) (0.0149) (0.0066)

8.5 69 0.6738 0.9724 0.8231 0.8156 0.6738 0.2977 0.6738

(0.0196) (0.0074) (0.0112) (0.0233) (0.0034) (0.0305) (0.0083)

9 41 1.2333 1.0550 1.1442 0.5599 0.4113 0.7562 1.0550

(0.0301) (0.0113) (0.0165) (0.0291) (0.0056) (0.0453) (0.0120)

9.5 17 1.1224 1.5129 1.8177 1.2731 0.9163 1.4882 1.1224

(0.0497) (0.0373) (0.0349) (0.0462) (0.0089) (0.0654) (0.0182)

Table 8 Estimators for σ at various thresholds u and corresponding standard errors in parentheses

u m M1 M2 M3 QM POS LCVM EPM

7 179 2.5264 2.2586 2.3925 3.9495 2.5264 2.9964 2.5264

(0.0147) (0.0088) (0.0089) (0.0214) (0.0174) (0.0148) (0.0092)

7.5 154 1.5493 1.7744 1.6619 1.5937 1.0827 1.7609 1.5493

(0.0100) (0.0080) (0.0071) (0.0103) (0.0183) (0.0098) (0.0065)

8 106 1.3872 1.7133 1.5502 1.4930 1.3872 1.4031 1.3872

(0.0110) (0.0087) (0.0082) (0.0130) (0.0224) (0.0097) (0.0070)

8.5 69 1.2098 1.3771 1.2935 1.2082 1.2098 0.9258 1.2098

(0.0119) (0.0089) (0.0086) (0.0128) (0.0255) (0.0086) (0.0076)

9 41 1.0179 0.9682 0.9931 0.7631 0.3926 0.7868 0.8155

(0.0139) (0.0085) (0.0089) (0.0116) (0.0266) (0.0085) (0.0065)

9.5 17 0.4955 0.7853 0.6404 0.5224 0.3710 0.5975 0.4955

(0.0122) (0.0111) (0.0102) (0.0109) (0.0407) (0.0091) (0.0059)
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Table 9 Estimated values of
GPD distribution parameters by
M1, M2, M3, QM, POS, LCVM
and EPM methods with
threshold value u = 0

Parameters
Methods σ k ASAE

M1 72.3776 8.8068 0.3425

M2 15.1893 1.5438 0.8332

M3 43.7834 5.1753 0.4335

QM 97.0948 11.8376 0.2998

POS 73.5043 7.4222 0.4784

LCVM 61.6182 6.2210 0.4795

EPM 31.2768 3.4700 0.4872

0.0
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Fig. 4 Estimated densities for all seven methods for zero-crossing hourly mean periods (in seconds) of the
sea waves measured in a Bilbao Buoy with threshold u = 0

5 Conclusions

In this paper, efficient new estimators of the GPD parameters have been proposed.
Some of these are very easy to compute and of closed-form, even for very large and
negative values of k. If ease of computation is as important as efficiency, then the
closed-form estimators M1, M3, and QM are recommended. Simulations results show
that for the estimation of k, for a large sample (n ≥ 50), both POS and LCVM
methods perform as well or significantly better than the EPM method. Furthermore,
for the estimation of σ , the POS method performs significantly better than the EPM
method when the sample size is n ≥ 100. We recommend M1 and QM methods
for negative k(≤ −3) values especially for estimating σ . Our proposed estimations
methods are applied to a real data set to illustrate the estimating procedure. Bootstrap
confidence intervals are very easy to find for the closed-form estimators and are a
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way to obtain confidence intervals for the GPD parameters if desired. We have also
developed an R package, EfficientClosedGPD, that allows readers to estimate GPD
parameters using the proposed methods.

Acknowledgements The authors sincerely thank the Associate Editor and the referee for their comments
which resulted in this improved version of the work.

Appendix

The proposed efficient new estimators of the GPD parameters are implemented as an
R package called EfficientClosedGPD, freely available on GitHub. For instance, the
GPD parameters based on the methods M1, M2, M3, QM, POS, and LCVM can be
obtained as follows.

rm( l i s t = ls ( ) )
library (devtools) # Make sure that the devtools library is loaded
install_github( ‘ ‘suthakaranr /EfficientClosedGPD’ ’)
library (EfficientClosedGPD) # Load the package
set . seed(650)
x = rgpd2(40, 2, 2) # Generate sample
Method1(x) # Method M1
Method2(x) # Method M2
Method3(x) # Method M3
MethodQM(x) # Method QM
MethodPOS(x) # Method POS
MethodLCVM(x) # Method LCVM
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