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ABSTRACT
In this paper, we present three empirical likelihood (EL)-based
inference procedures to construct confidence intervals for quan-
tile regression models with longitudinal data. The traditional EL-
basedmethod suffers fromanunder-coverage problem, especially in
small sample sizes. The proposedmodified EL-based non-parametric
methods including adjusted empirical likelihood (AEL), the trans-
formed empirical likelihood (TEL), and the transformed adjusted
empirical likelihood (TAEL) exhibit good finite sample performance
over other existing procedures. Simulations are conducted to com-
pare the performances of the proposed methods with the other
methods in terms of coverage probabilities and average lengths of
confidence intervals under different scenarios.
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1. Introduction

In recent years, quantile regression (QR) has been widely used in many areas due to its
attractive properties as opposed to the conventional ordinary least square (OLS) regression
model. In their seminal work, Koenker and Bassett [1] introduced the QR approach as
an alternative to the least square regression. In comparison to OLS, QR design to model
the changes in the conditional quantiles of the response variable in relation to changes in
the covariates. Several studies investigated the use of QR for the analysis of longitudinal
data. Geraci and Bottai [2] proposed a linear model for QR that includes random effects
to allow for the dependence between serial observations on the same subject. To estimate
quantile functions with subject-specific fixed effects, Koenker [3] proposed the penalized
interpretation of the classical random-effects estimator.

Empirical likelihood (EL) introduced byOwen [4] is a powerful nonparametricmethod.
There is significant literature on the theoretical and practical application of the EL
method. Further, the EL method holds appealing properties including range respecting,
transformation-preserving, asymmetric confidence interval, Bartlett correctability, and
better coverage probability for small samples, see, for example, [5,6].Moreover, undermild
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regularity conditions, Owen [7,8] showed that the empirical likelihood ratio (ELR) statis-
tic obeys the chi-square distribution asymptotically. This can be seen as the nonparametric
extension of the well knownWilks’ theorem. Because of this appealing property, the EL has
been widely used for constructing confidence regions. There have been numerous stud-
ies that investigated the EL confidence intervals for quantile regression. Chen and Hall [9]
derived the EL confidence intervals for the population quantiles without covariates.Whang
[10] considered the smoothed EL (SEL) for quantile regressionmodels with cross-sectional
data. The EL for censored survival data proposed by Qin and Tsao [11]. Zhao and Chen
[12] investigated the EL for the censored median regression model via nonparametric ker-
nel estimation. Tang and Leng [13] considered the EL for QR in longitudinal data analysis.
Wang and Zhu [14] developed two novel EL-based inference procedures for longitudinal
data under the framework of quantile regression. Wang and Zhu [14] pointed out that the
SEL procedure achieves higher-order accuracy by replacing the quantile score function
with a smoothed counterpart. They used the blocking technique in order to accommodate
the intra-subject correlation.

Chen et al. [15] pointed out the computation of the profile empirical likelihood function
involves constrained maximization which requires that the convex hull of the estimating
equation must have the zero vector as an interior point. This sometimes violates EL com-
putation. As a result, the EL method suffers from an under-coverage problem. In order to
rectify the problem, Chen et al. [15] proposed the adjusted empirical likelihood method
(AEL) which ensures the existence of the solution in maximization problem and preserves
the asymptotic optimality properties. Jing et al. [16] proposed a simple solution to the
under-coverage problem especially for small sample sizes via transformed empirical likeli-
hood (TEL). The transformed adjusted empirical likelihood (TAEL) proposed by Stewart
and Ning [17] which combines the advantages of AEL and TEL.

In this paper, we proposed three novel EL-based procedures to construct confidence
intervals for quantile regression models with longitudinal data based on the AEL, TEL,
and TAEL. The rest of the paper is organized as follows. In Section 2, we briefly describe
the quantile regression model for longitudinal data. The proposed AEL, TEL, and TAEL
methods for longitudinal data in quantile regression models, main theoretical results and
the construction of confidence regions are given in Section 3. Simulations to investigate
the finite-sample performance of the proposed procedures and comparison between the
proposed methods and other existing methods in terms of powers and average lengths of
confidence sets are conducted in Section 4. A real data application is given in Section 5.
Some discussion is provided in Section 6.

2. Methodology

Throughout this paper, we adopt notations similar to those of [14]. Let τ ∈ (0, 1) be the
quantile level of interest. The quantile regressionmodel for longitudinal data is given below.

yij = x�
ij β0 + eij, i = 1, . . . , n, j = 1, . . . , ni, (1)

where yij is the jthmeasurement of the ith subject, xij is the observed p−dimensional design
vector, β0 is a p−vector of unknown parameters, eij is the random error satisfying P(eij <
0 | xij) = τ for any i and j. The random errors are correlated within the same subject, but
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independent between subjects. Now, the quantile regression estimator β̂τ of β0 is given as,

min
β∈B

Qn(β) = argminβ∈B

1
n

n∑
i=1

N∑
j=1

ρτ (yij − x�
ij β), (2)

where B is the parameter space and ρτ (u) = u{τ − I(u < 0)} is the quantile loss func-
tion. For independent data, Koenker and Bassett [1] showed that β̂τ is n1/2− consistent
and asymptotically normal. Under the above model assumptions, β0 satisfies the following
estimating equation:

E
[
xijψ(yij, xij,β0)

] = 0, (3)

whereψ(y, x,β) = I(x�β − y > 0)− τ is the quantile score function, and I(·) is the indi-
cator function. You et al. [18] pointed out for longitudinal data the regular EL formulation
cannot be used to derive the desiredWilk’s theorem due to the correlation within subjects.
The blocking technique proposed by Wang and Zhu [14] which treats ψ(yij, xij,β0), j =
1, . . . , ni as a whole unit in the development of EL. Let Xi = (xi1, . . . , xini)� be a ni ×
p design matrix on the ith subject, ψi(β) = (ψ(yi1, xi1,β), . . . ,ψ(yini , xini ,β))�, and
Zi(β) = X�

i ψi(β). Let p1. . . . , pn be non-negative numbers satisfying
∑n

i=1 pi = 1. The
block empirical log-likelihood ratio for β is defined as

l(β) = max

{ n∑
i=1

log(npi)

∣∣∣∣∣pi ≥ 0,
n∑

i=1
pi = 1,

n∑
i=1

piZi(β) = 0

}
. (4)

The Lagrange multiplier method leads to

pi(β) = 1
n

(
1

1 + λ(β)�Zi(β)

)
, (5)

where λ(β) is p−dimensional Lagrange multiplier satisfying

1
n

n∑
i=1

Zi(β)
1 + λ(β)�Zi(β)

= 0. (6)

Thus, the empirical log-likelihood ratio statistic can be written as

l(β) =
n∑
i=1

log
(
1 + λ(β)�Zi(β)

)
, (7)

with λ(β) satisfying (7). The equation (7) can be solved by the modified Newton-Raphson
algorithm of Chen (2002). Thus, the maximum empirical likelihood estimator of β0 as,

β̂EL = argminβ∈B
{−2l(β)}. (8)

Let h be a positive bandwidth parameter. Wang and Zhu [14] considered a smooth empiri-
cal likelihood (SEL) approach by approximating ψ(·) by a smooth function ψh(·) in order
to achieve the higher-order accuracy. Define G(x) = ∫

u<x K(u)du and Gh(x) = G(x/h),
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whereK(·) is bounded, compactly supported on [−1, 1], and integrated to one.We approx-
imate ψ(·) with ψh(yij, xij,β) = Gh(x�

ij β − yij)− τ . Let Zhi(β) = X�ψh(β). The smooth
empirical log-likelihood for β is defined as,

lh(β) = max

{ n∑
i=1

log(npi)

∣∣∣∣∣pi ≥ 0,
n∑

i=1
pi = 1,

n∑
i=1

piZhi(β) = 0

}
. (9)

The maximum smooth empirical likelihood estimator of β0 as,

β̂SEL = argminβ∈B
{−2lh(β)}. (10)

Under some regularity conditions, Wang and Zhu [14] showed that β̂EL and β̂SEL have the
same asymptotic distribution as β̂Q, as h goes to zero sufficiently fast when n −→ ∞.

3. Main results

In this section, we establish the theoretical properties of the EL quantile estimators
β̂AEL, β̂TEL, and β̂TAEL.We assumes the following conditions used in [14,19] to establish the
asymptotic properties of the proposed methods. As similar to [14], for simplicity, we con-
sider a balanced design with n1 = · · · = nn = m. First, we denote F(u1, . . . , um | x) as the
joint distribution function of ei = (ei1, . . . , eim)�, and Fj(uj | x) as the marginal distribu-
tion function of eij conditional onXi = x. Now, we define f (u1, . . . , um | x) as the joint den-
sity of ei, and fj(uj | x) as the marginal density of eij with respect to the Legbesgue measure.
Furthermore, let f̄ (u | x) = diag{f1(u1 | x), . . . , fm(um | x)}, S = E{X�

i f̄ (0 |Xi)Xi}, and� =
E{X�

i ψi(β0)ψi(β0)
�Xi}, where ψi(β0) = (ψ(yi1, xi1,β0), . . . ,ψ(yim, xim,β0))� and let

r ≥ 2.

(A1) Let Yi = (yi1, . . . , yim)�. The {Yi,Xi}, i = 1, . . . , n are i.i.d. random vectors.
(A2) The parameter vector β0 is an interior point of the parameter space B, a compact

subset of Rp.
(A3) Xi has a bounded support, and matrices S and� are nonsingular.

(1) f (u1, . . . , um|x) has a continuous partial derivative with respect to uj, j =
1, . . . ,m.

(2) For all uj in a neighborhood of 0 and almost every x, fj(uj|x) exist, are bounded
away from zero, and r times continuously differential with respect to uj, j =
1, . . . ,m.

3.1. Modified empirical likelihoodmethods

3.1.1. Adjusted empirical likelihood
As discussed earlier, the EL method requires the convex hull of the estimating equation
to contain a zero as an interior point. Owen [8] suggested assigning −∞ to the empirical
log-likelihood ratio statistic if the solution doesn’t exist. Chen et al. [15] suggested adding
a pseudo term to ensure that the zero-vector is within the convex hull. Let Zi = Zi(β)
for i = 1, . . . , n. Reprising [15], for any given β and some positive constant an. Let Z̄n =
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Z̄n(β) = 1
n

∑n
i=1 Zi for any given β . We define an additional term,

Zn+1 = Zn+1(β) = −an
n

n∑
i=1

Zn = −anZ̄n. (11)

Then l(β) can be adjusted as

l∗(β) = max

{n+1∑
i=1

log((n + 1)pi)

∣∣∣∣∣pi ≥ 0,
n+1∑
i=1

pi = 1,
n+1∑
i=1

piZi(β) = 0

}
. (12)

Chen et al. [15] showed that, as n −→ ∞,−2l∗(β) −→ χ2
1−α(p) in distribution with an =

op(n2/3), where p is the dimension of the vector (xij). First we will show that the AEL has
the same asymptotic properties as the unadjusted EL.

Theorem 3.1: Let β0 be the true parameter that satisfies E{Zi(β)} = 0 and the �(β0) =
E{X�

i ψi(β0)ψi(β0)
�Xi}, i = 1, . . . , n, is of full rank. Let l∗(β) be the adjusted profile log-

likelihood ratio function defined in (12) and an = op(n2/3). As n −→ ∞, we have

−2l∗(β0) −→ χ2(p).

in distribution, where p is the dimension of the vector (xij).

Proof: Let λ(β) be the solution to

n+1∑
i=1

Zi(β)
1 + λ�Zi(β)

= 0 (13)

We first show that λ = Op(n−1/2). Let Z∗ = max1≤≤n ‖Zi‖ = op(n1/2). Let ρ = ‖λ‖ and
λ̂ = λ/ρ. Multiplying λ̂/n to both sides gives,

0 = λ̂

n

n+1∑
i=1

Zi(β)
1 + λ̂�Zi(β)

= λ̂

n

n+1∑
i=1

Zi − ρ

n+1∑
i=1

(λ̂�Zi)2

(1 + ρλ̂�Zi)

≤ λ̂�Z̄n(1 − an/n)− ρ

n(1 + ρZ∗)

n∑
i=1
(λ̂�Zi)2

= λ̂�Z̄n − ρ

n(1 + ρZ∗)

n∑
i=1
(λ̂�Zi)2 + Op(n−2/3an). (14)

Using the assumption on variance, we have

�̂(β̂) = 1
n

n∑
i=1

Zi(β̂)Zi(β̂)�. (15)
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Using the Lemma 4.1 given in [20] gives,

1
n

n∑
i=1

Zi(β) = 1
n

n∑
i=1

Zi(β0)+ 1
n

n∑
i=1

X�
i f̄ (0|Xi)Xi(β − β0)+ op(n−δ). (16)

By (16) and similar arguments of the proof of Lemma 1 in [21], we have,

λ(β) =
{
1
n

n∑
i=1

Zi(β)Zi(β)�
}−1

1
n

n∑
i=1

Zi(β)+ op(n−δ)

= �−1n−1
n∑

i=1
Zi(β)+ Op(n−δ). (17)

For any given ε > 0,

1
n

n∑
i=1

{λ(β)�Zi(β)}2 ≥ 1 − ε. (18)

Therefore, as long as an = op(n), we get (15), which implies that,

ρ

(1 + ρZ∗)
≤ λ̂� Z̄n

(1 − ε)
= Op(n−1/2). (19)

Thus, we get ρ = Op(n−1/2) and hence λ = Op(n−1/2). Now consider,

0 = 1
n

n+1∑
i=1

Zi(β)
1 + λ�Zi(β)

= Z̄n − λ�V̂n + op(n−1/2). (20)

where V̂n = 1
n

∑n
i=1 Zi(β)Zi(β)

�. Hence, when n −→ ∞, λ = V̂−1
n Z̄n + op(n−1/2). Now,

we expand l∗ as follows

−2l∗(β0) = 2
n+1∑
i=1

log(1 + λ�Zi(β))

= 2
n+1∑
i=1

{
λ�Zi(β)−

(
λ�Zi(β)

)2
2

}
+ op(1). (21)

Substituting the expansion of λ, we get that

−2l∗(β0) = nZ̄�
n V̂

−1
n Z̄n + op(1)

d−→ χ2(p).
(22)

�
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Table 1. Estimated coverage probabilities (CP) of confidence intervals for β1, β1, and the average
lengths (AL) of confidence intervals from different methods in Model 1.

β0 β1

n τ Method CP AL CP AL

30 0.5 EL 0.9260 0.6282 0.9355 0.2095
SEL 0.9340 0.6348 0.9410 0.2046
AEL 0.9320 0.6395 0.9395 0.2149
TEL 0.9395 0.6607 0.9510 0.2282
TAEL 0.9425 0.6715 0.9560 0.2358

0.7 EL 0.9180 0.6434 0.9390 0.2226
SEL 0.9210 0.6482 0.9205 0.2131
AEL 0.9230 0.6545 0.9445 0.2285
TEL 0.9315 0.6771 0.9530 0.2423
TAEL 0.9360 0.6885 0.9605 0.2502

50 0.5 EL 0.9270 0.4966 0.9465 0.1658
SEL 0.9280 0.4988 0.9365 0.1603
AEL 0.9295 0.5056 0.9540 0.1703
TEL 0.9335 0.5116 0.9600 0.1737
TAEL 0.9360 0.5201 0.9635 0.1788

0.7 EL 0.9250 0.5124 0.9330 0.1742
SEL 0.9380 0.5148 0.9320 0.1692
AEL 0.9295 0.5216 0.9385 0.1789
TEL 0.9320 0.5279 0.9415 0.1823
TAEL 0.9380 0.5368 0.9480 0.1877

100 0.5 EL 0.9465 0.3568 0.9495 0.1171
SEL 0.9395 0.3568 0.9345 0.1151
AEL 0.9490 0.3635 0.9555 0.1203
TEL 0.9485 0.3624 0.9550 0.1197
TAEL 0.9505 0.3688 0.9595 0.1229

0.7 EL 0.9410 0.3680 0.9435 0.1242
SEL 0.9395 0.3677 0.9395 0.1215
AEL 0.9450 0.3748 0.9525 0.1273
TEL 0.9440 0.3735 0.9505 0.1267
TAEL 0.9460 0.3801 0.9575 0.1300

3.1.2. Transformed empirical likelihood
Wang and Zhu [14] considered Bartlett correction for the smoothed empirical likelihood
in order to improve coverage accuracy. However, Corcoran et al. [22] noted that for finite
sample applications the Bartlett correction factor may be difficult to estimate. Jing et al.
[16] proposed a procedure to overcome the under-coverage problem in EL which requires
a simple transformation of the original EL. Indeed, Jing et al. [16] approach gives sub-
stantially more accurate confidence regions without adding theoretical or computational
complexity. For a constant γ ∈ [0, 1], we define

Zt(l(β), γ ) = l(β)× max{1 − l(β)/n, 1 − γ }, (23)

and refer to Zt(l(β); γ ) as the truncated quadratic transformation of l(β) defined in (4).
Following, Jing et al. [16], we set γ = 1/2. Thus, the transformed empirical log-likelihood
ratio can be defined as follows.

lt(β) = Zt(l(β), γ = 1/2) = l(β)× max{1 − l(β)/n, 1/2}. (24)
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Table 2. Estimated coverage probabilities (CP) of confidence intervals for β1, β1, and the average
lengths (AL) of confidence intervals from different methods in Model 2.

β0 β1

n τ Method CP AL CP AL

30 0.5 EL 0.9350 0.2138 0.9340 0.1887
SEL 0.9370 0.2108 0.9335 0.1848
AEL 0.9420 0.2193 0.9395 0.1934
TEL 0.9490 0.2315 0.9565 0.2037
TAEL 0.9555 0.2386 0.9610 0.2095

0.7 EL 0.9305 0.2185 0.9300 0.1957
SEL 0.9330 0.2154 0.9325 0.1910
AEL 0.9360 0.2238 0.9345 0.1999
TEL 0.9530 0.2363 0.9450 0.2106
TAEL 0.9580 0.2431 0.9510 0.2161

50 0.5 EL 0.9345 0.1672 0.9480 0.1488
SEL 0.9370 0.1652 0.9475 0.1461
AEL 0.9410 0.1716 0.9515 0.1525
TEL 0.9470 0.1749 0.9570 0.1552
TAEL 0.9565 0.1800 0.9605 0.1593

0.7 EL 0.9400 0.1721 0.9340 0.1546
SEL 0.9390 0.1701 0.9370 0.1520
AEL 0.9450 0.1767 0.9410 0.1583
TEL 0.9500 0.1799 0.9460 0.1610
TAEL 0.9565 0.1849 0.9515 0.1652

100 0.5 EL 0.9445 0.1181 0.9405 0.1059
SEL 0.9485 0.1173 0.9395 0.1049
AEL 0.9500 0.1211 0.9450 0.1087
TEL 0.9480 0.1205 0.9440 0.1081
TAEL 0.9565 0.1237 0.9485 0.1110

0.7 EL 0.9495 0.1220 0.9410 0.1111
SEL 0.9510 0.1211 0.9420 0.1097
AEL 0.9560 0.1252 0.9470 0.1138
TEL 0.9545 0.1246 0.9465 0.1132
TAEL 0.9590 0.1280 0.9525 0.1162

The corresponding transformed empirical log-likelihood ratio, denoted by l(β), is

lt(β) =
{
l(β)[1 − l(β)/n] if l(β) ≤ n/2,
l(β)/2 if l(β) > n/2.

(25)

Jing et al. [16] pointed out that the TEL shares the same asymptotic properties with the EL.
For more details readers are encouraged to look into the original reference [16].

Theorem 3.2: Let β0 be the true parameter that satisfies E{Zi(β)} = 0 and the �(β0) =
E{X�

i ψi(β0)ψi(β0)
�Xi}, i = 1, . . . , n, is of full rank. Let lt(β) be the adjusted profile log-

likelihood ratio function defined in (24) and an = op(n2/3). As n −→ ∞, we have

−2lt(β0) −→ χ2(p).

in distribution.

Proof: We consider the same arguments used in [16]. We will look at four criteria
separately.
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Table 3. Estimated coverage probabilities (CP) of confidence intervals for β1, β1, and the average
lengths (AL) of confidence intervals from different methods in Model 3.

β0 β1

n τ Method CP AL CP AL

30 0.5 EL 0.9330 0.3831 0.9330 0.2671
SEL 0.9315 0.3756 0.9355 0.2614
AEL 0.9375 0.3939 0.9410 0.2745
TEL 0.9510 0.4185 0.9535 0.2920
TAEL 0.9590 0.4327 0.9570 0.3015

0.7 EL 0.9310 0.5495 0.9310 0.3722
SEL 0.9330 0.5407 0.9340 0.3742
AEL 0.9385 0.5640 0.9365 0.3822
TEL 0.9480 0.5992 0.9490 0.4061
TAEL 0.9525 0.6195 0.9520 0.4193

50 0.5 EL 0.9445 0.2985 0.9400 0.2060
SEL 0.9455 0.2939 0.9395 0.2033
AEL 0.9510 0.3064 0.9455 0.2116
TEL 0.9565 0.3122 0.9485 0.2158
TAEL 0.9585 0.3217 0.9525 0.2226

0.7 EL 0.9450 0.4231 0.9380 0.2857
SEL 0.9480 0.4182 0.9435 0.2824
AEL 0.9510 0.4347 0.9455 0.2939
TEL 0.9535 0.4432 0.9500 0.2997
TAEL 0.9590 0.4565 0.9540 0.3085

100 0.5 EL 0.9440 0.2103 0.9460 0.1451
SEL 0.9440 0.2084 0.9505 0.1436
AEL 0.9500 0.2158 0.9530 0.1489
TEL 0.9520 0.2148 0.9525 0.1482
TAEL 0.9555 0.2207 0.9575 0.1522

0.7 EL 0.9455 0.2958 0.9540 0.2014
SEL 0.9495 0.2932 0.9530 0.1999
AEL 0.9520 0.3034 0.9600 0.2067
TEL 0.9590 0.3019 0.9590 0.2057
TAEL 0.9610 0.3099 0.9640 0.2114

• (C1) 0 ≤ lt(β) ≤ l(β)
• (C2) lt(β) is a monotonically increasing function of l(β)
• (C3) lt(β0) = l(β0)+ op(1)
• (C4) For any τ1 ∈ [0,+∞) the level-τ1 contour of lt(β), {β : lt(β) = τ1} is the same in

shape as some level-τ2 contour

We evaluate criteria (C1) through (C4) given below.

• (C1) We can easily see that from the original empirical log-likelihood l(β)(≥ 0). This
implies that

0 < max{1 − l(β)/n, 1/2} ≤ 1. (26)

Hence, 0 ≤ lt(β) ≤ l(β).
• (C2) For l(β) ∈ [0, n/2], we have lt(β) = l(β)× max{1 − l(β)/n, 1/2}. Specifically,

lt(β) is a strictly monotonically increasing function of l(β) over the interval [0, n/2].
Thus for l(β) > n/2, we have lt(β) = l(β)/2. This is also a strictly monotonically
increasing function of l(β). Therefore, lt(β) is non-negative, continuous, and strictly
monotonically increasing over l(β) ∈ [0,+∞].
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Table 4. Estimated coverage probabilities (CP) of confidence intervals for β1, β1, and the average
lengths (AL) of confidence intervals from different methods in Model 4.

β0 β1

n τ Method CP AL CP AL

30 0.5 EL 0.9285 1.5710 0.9330 1.0047
SEL 0.9320 1.5792 0.9320 0.9984
AEL 0.9385 1.6125 0.9415 1.0328
TEL 0.9500 1.7076 0.9545 1.0973
TAEL 0.9560 1.7641 0.9600 1.1361

0.7 EL 0.9250 2.0790 0.9315 1.3958
SEL 0.9310 2.1280 0.9280 1.3828
AEL 0.9375 2.1310 0.9355 1.4332
TEL 0.9480 2.2549 0.9470 1.5206
TAEL 0.9510 2.3233 0.9550 1.5704

50 0.5 EL 0.9270 1.2276 0.9425 0.7716
SEL 0.9265 1.2273 0.9425 0.7665
AEL 0.9335 1.2609 0.9510 0.7926
TEL 0.9365 1.2862 0.9565 0.8079
TAEL 0.9435 1.3240 0.9595 0.8327

0.7 EL 0.9310 1.6868 0.9440 1.1086
SEL 0.9355 1.6979 0.9435 1.1017
AEL 0.9480 1.7310 0.9520 1.1380
TEL 0.9540 1.7637 0.9555 1.1598
TAEL 0.9655 1.8126 0.9675 1.1955

100 0.5 EL 0.9325 0.8628 0.9445 0.5382
SEL 0.9325 0.8617 0.9455 0.5359
AEL 0.9395 0.8851 0.9500 0.5524
TEL 0.9380 0.8807 0.9485 0.5497
TAEL 0.9445 0.9049 0.9565 0.5649

0.7 EL 0.9410 1.2085 0.9500 0.7924
SEL 0.9480 1.2078 0.9470 0.7902
AEL 0.9535 1.2400 0.9560 0.8136
TEL 0.9580 1.2337 0.9540 0.8095
TAEL 0.9665 1.2669 0.9640 0.8312

• (C3) Wang and Zhu [14] showed that the limiting distribution of l(β0) is χ2(p), dis-
tribution, we have that l(β0) = Op(1). Thus with probability tending to unity we have
l(β0) ≤ n/2. Thus, it follows that for all asymptotic discussions we may simply assume
that lt(β0) = l(β0)× max{1 − l(β0)/n, 1/2}. Using this fact and that l(β0) = Op(1)
gives us (C3).

• (C4) For a level-τ1 contour of the transformed empirical log-likelihood ratio {β :
lt(β) = τ1}, as lt(β) is a strictly monotonically increasing function of l(β), let τ2 =
l−1
t (τ1), then {β : lt(β) = τ1} = {β : l(β) = τ2}. Further, as l(β) typically has a unique
minimum at β̃ , the second part of (C4) also follows from the monotonicity of lt(β).

�

3.1.3. Transformed adjusted empirical likelihood
Transformed adjusted empirical likelihood (TAEL) is a combination of AEL and TEL
methods proposed by Stewart and Ning [17]. The TAELmethod comprises the advantages
of AEL and TEL. Let Zi = Zi(Xi,β) for i = 1, . . . , n. For a constant γ ∈ [0, 1], we define

Z∗
t (l

∗(β), γ ) = l∗(β)× max{1 − l∗(β)/n, 1 − γ }. (27)
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Figure 1. Coverage probabilities of the EL, AEL, TEL and TAEL methods with a range of τ values for
sample size n = 30.

where l∗(·) defined in (12). Thus, for γ = 1/2, the transformed empirical log-likelihood
ratio l∗t (β) can be defined as,

Z∗
t (l

∗(β), γ ) = l∗(β)× max{1 − l∗(β)/n, 1/2}. (28)

More explicitly,

l∗t (β) =
{
l∗(β)[1 − l∗(β)/n] if l∗(β) ≤ n/2,
l∗(β)/2 if l∗(β) ≥ n/2.

(29)

Theorem 3.3: Let β0 be the true parameter that satisfies E{Zi(β)} = 0 and the �(β0) =
E{X�

i ψi(β0)ψi(β0)
�Xi}, i = 1, . . . , n, is of full rank. Let l∗t (β) be the adjusted profile log-

likelihood ratio function defined in (29) and an = op(n2/3). As n −→ ∞, we have

−2l∗t (β0) −→ χ2(p)
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Figure 2. Coverage probabilities of the EL, AEL, TEL and TAEL methods with a range of τ values for
sample size n = 100.

in distribution.

Proof: In order to proof the Theorem 3.3 we will follow the same strategy used in
Theorem 3.2. Thus, details are omitted to conserve space. �

3.2. Confidence regions

Theorem 3.4: If Assumptions A1–A3 hold,

(1) −2l(β0) −→ χ2(p)
(2) −2l∗(β0) −→ χ2(p)
(3) −2lt(β0) −→ χ2(p)
(4) −2l∗t (β0) −→ χ2(p)
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Figure 3. The point estimates (closed circles) and 95% pointwise confidence band of the quantile
coefficients using AEL, TEL and TAEL.

Proof: The proof of Theorem 3.4 is similar to the proof of Theorem 2 given in [14]. Thus,
details are omitted to conserve space. �

As an analogy to parametric likelihoods, Theorem 3.4 allows us to use the test statis-
tics l(β0), l∗(β0), lt(β0) and l∗t (β0) for testing or obtaining confidence regions for β0.
Specifically, we define

IEL = {β : −2l(β) ≤ χ2
1−α(p)},

IAEL = {β : −2l∗(β) ≤ χ2
1−α(p)},

ITEL = {β : −2lt(β) ≤ χ2
1−α(p)},

ITAEL = {β : −2l∗t (β) ≤ χ2
1−α(p)}.

(30)

as the EL, AEL, TEL and TAEL confidence regions for β0, respectively, where χ2
1−α(p) is

the (1 − α)th quantile of χ2(p).
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4. Simulation study

In this section, we conduct simulation studies to evaluate the performance of the proposed
AEL, TEL and TAEL-based confidence regions for β with the existing EL and SEL based
confidence intervals in terms of coverage probabilities and average lengths. We consider
the same settings used in [14] such as homoscedastic and heteroscedastic error distribu-
tions. In addition, we use two additional settings including heavy-tailed and skewed error
distributions.

• Model 1: (Homoscedastic)

yij = β0 + xijβ1 + eij(τ ), i = 1, . . . , n, j = 1, . . . ,N.

where xij ∼ N(0.5j, 0.52), and (ei1, . . . , eiN)� ∼ N(0,V), where V has an exchangeable
structure with diagonal entries 1 and off-diagonal entries 0.7, eij(τ ) = eij −−1(τ ) with
 being the cumulative distribution function of N(0, 1). Here −1(τ ) is subtracted from
eij so that the τ th quantile of eij(τ ) is zero.

• Model 2: (Heteroscedastic)

yij = β0 + xijβ1 + 0.25(1 + |xij|)eij(τ ), i = 1, . . . , n, j = 1, . . . ,N.

where xij ∼ N(0.5j, 0.52), and (ei1, . . . , eiN)� ∼ N(0,V), where V has an AR(1) correla-
tion structure, i.e. corr(eij, eik) = 0.7|j−k|, and eij(τ ) = eij −−1(τ ).

• Model 3: (Heavy-tailed)

yij = β0 + xijβ1 + eij, i = 1, . . . , n, j = 1, . . . ,N.

where xij ∼ N(0.1j, 1.752), and (ei1, . . . , eiN)� ∼ Cauchy(0, 1),

• Model 4: (Skewed)

yij = β0 + xijβ1 + eij, i = 1, . . . , n, j = 1, . . . ,N.

where xij ∼ Unif(0, 1), and (ei1, . . . , eiN)� ∼ SN(1, 0.5, 0.5). The probability distribution
function of a skew normal random variable X is given by

fX(x) = 2
σ
φ

(
x − μ

σ

)


(
λ
x − μ

σ

)
, x ∈ R

where φ and are the probability distribution function and cumulative distribution func-
tion of the standard normal distribution. We denote X ∼ SN(μ, σ , λ). In all four models,
we let m = 10, and β0 = β1 = 1. In our simulation study, we consider different quantile
levels of interest, including τ = 0.5 and 0.7 and various sample sizes n = 30, 50 and 100.
The results are based on 2000 iterations. The results are summarized in Tables 1–4. Inmost
of the scenarios, We observe that the AEL, TEL and TAEL based confidence intervals for
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Table 5. Estimation and confidence intervals of quantile coefficients in the ophthalmology study at quantile level, τ = 0.25, 0.5, 0.75.

95% Confidence Interval

τ Variable Estimate EL Length AEL Length TEL Length TAEL Length

0.25 Intercept 1.351 (0.759, 1.846) 1.087 (0.560, 1.839) 1.279 (0.588, 1.846) 1.258 (0.560, 1.839) 1.279
Time (log t) 0.304 (−0.151, 0.825) 0.976 (0.075, 0.893) 0.818 (−0.251, 0.827) 1.078 (−0.076, 1.003) 1.079
Time2 (log2 t) −0.307 (−0.399,−0.186) 0.213 (−0.417,−0.211) 0.206 (−0.399,−0.172) 0.227 (−0.417,−0.211) 0.206
Gas (x) 0.482 (0.263, 0.997) 0.734 (0.176, 0.992) 0.816 (0.257, 0.997) 0.740 (0.083, 0.992) 0.909

0.5 Intercept 1.944 (1.466, 2.523) 1.057 (1.365, 2.523) 1.158 (1.367, 2.572) 1.205 (1.365, 2.523) 1.158
Time (log t) 0.340 (−0.105, 0.592) 0.697 (−0.105, 0.638) 0.743 (−0.105, 0.593) 0.698 (−0.105, 0.737) 0.842
Time2 (log2 t) −0.333 (−0.381,−0.203) 0.178 (−0.373,−0.205) 0.168 (−0.383,−0.203) 0.180 (−0.382,−0.205) 0.177
Gas (x) 0.381 (0.274, 0.744) 0.470 (0.264, 0.740) 0.476 (0.199, 0.744) 0.545 (0.200, 0.740) 0.540

0.75 Intercept 2.868 (2.363, 3.045) 0.682 (2.303, 3.045) 0.742 (2.303 3.045) 0.742 (2.303, 3.045) 0.742
Time (log t) 0.178 (−0.422, 0.809) 1.231 (−0.518, 0.868) 1.386 (−0.541, 0.851) 1.392 (−0.542, 0.923) 1.465
Time2 (log2 t) −0.315 (−0.479,−0.152) 0.327 (−0.490,−0.101) 0.389 (−0.484,−0.131) 0.353 (−0.493,−0.101) 0.392
Gas (x) 0.171 (−0.418, 0.742) 1.160 (−0.378, 0.740) 1.118 (−0.459, 0.742) 1.201 (−0.538, 0.740) 1.278
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the regression parameters have higher coverage probabilities than the EL and SEL based
confidence regions. In particular, the TAEL based confidence regions gives better coverage
for various sample sizes and at different quantile level. The EL-based confidence regions
typically perform the worst of the methods overall, however in some cases slightly better
than the SEL. On the other hand, the SEL method has the second-worst coverage rates.
Especially, in Model 4, when the sample size is small, coverage probabilities of EL and
SEL are lower than the nominal level. However, the TEL and TAEL have coverage prob-
abilities that are closer to the nominal confidence level. Not surprisingly, as sample size
increases, all five methods give better coverage probabilities, however, coverage probabil-
ities of AEL, TEL and TAEL are much better than the existing methods. Generally, the
confidence regions of the AEL, TEL, and TAEL have longer average lengths than those of
EL and SEL, however, they are still in an acceptable range. Our simulation results suggest,
in some cases, the TAEL has an over-coverage problem, although coverage probabilities are
slightly higher than the nominal level with only around 0.96. In those cases, we recommend
to use AEL or TEL methods.

Next, we sketch the coverage probabilities of the EL, AEL, TEL and TAEL based confi-
dence regions for sample sizes n = 30 and 100 and at various quantile levels. The results
are shown in Figures 1 and 2. For a small sample size (for example, n = 30), when τ
increases, the coverage probability increases at first to a maximum towards the middle,
then decreases. Not surprisingly, when the sample size increases from 30 to 100, all meth-
ods give coverage probabilities close to the nominal level. Overall, for all quantile levels,
the coverage probabilities of AEL, TEL and TAEL are higher than the EL method.

5. Real data analysis

In this section, we apply our proposed methods to demonstrate the effectiveness of AEL,
TEL, and TAEL in constructing confidence intervals by analyzing an ophthalmology data
set. This data set was used in [14,23]. Intraocular gas was pumped into the eyes of 31
patients before retinal repair operations to provide an internal retinal split tamponade.
The follow-up of patients was performed 3 to 8 times in three months after the operation,
and gas leftovers were calculated as a proportion of the original gas content in the eyes.
Wang and Zhu [14] studied how the conditional quantiles of gas decay with time. Simi-
lar to [14], we let yij be the gas volume left in the eye of patient i at day tij. We define the
logit-transformed response

ŷij = log
(

yij + 0.05
1 − yij + 0.05

)
,

where the constant 0.05 is added to avoid zero denominators. Let xi be the centered gas
concentration of the ith subject, so that xi = −1, 0, 1 corresponding to gas concentration
levels of 15, 20 and 25, respectively. We consider the following quantile regression model

ŷij = β0(τ )+ β1(τ ) log(tij)+ β2(τ ) log2(tij)+ β3(τ )xi + eij(τ )

where the tth conditional quantile of eij(τ ) given the other covariates is zero. In our analy-
sis, we compute confidence intervals for the EL, AEL, TEL and TAEL at τ = 0.25, 0.5 and
0.75. Table 5 summarizes the coefficient estimations and 95% confidence intervals for all
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four methods. We observe that the EL method provides the narrower confidence inter-
vals while TAEL gives the longest. All four procedures agree in terms of the significance
of effects at τ = 0.25, 0.5 and 0.75. However, at τ = 0.25, the EL, TEL and TAEL meth-
ods do not detect the time effects. In most cases, the average lengths of 95% AEL, TEL
and TAEL confidence intervals are higher than that of the EL-based confidence interval.
Figure 3 illustrates the point estimates (closed circles), and the shaded area depicts a 95%
pointwise confidence band obtained from the AEL, TEL and TAEL methods.

6. Conclusion

In this paper, we study the modified empirical likelihood methods including the adjusted
empirical likelihood (AEL), the transformed empirical likelihood (TEL), and the trans-
formed adjusted empirical likelihood (TAEL) on constructing confidence intervals for
quantile regression models with longitudinal data. The profile log-EL statistics under the
true values of the parameters share the same asymptotic properties with the original EL.
Simulations under various scenarios are conducted to compare the proposed procedures
with the existing method proposed in [14] in terms of coverage probabilities and average
lengths of the confidence intervals. The simulation results indicate that the proposed AEL,
TEL, and TAEL provide better coverage probabilities which are closer to the nominal con-
fidence level than the EL and SEL based coverage probabilities. A real data application is
given to illustrate the construction of confidence intervals by the proposed methods.
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