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ABSTRACT
In this article, we propose a procedure to monitor the structural
changes in the penalized regression model for high-dimensional
data sequentially. Our approach utilizes a given historical data set to
perform both variable selection and estimation simultaneously. The
asymptotic properties of the test statistics are established under
the null and alternative hypotheses. The finite sample behavior
of the monitoring procedure is investigated with simulation studies.
The proposed method is applied to a real data set to illustrate the
detection procedure.
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1. INTRODUCTION

In sequential change-point analysis the observations are received sequentially and we
need to decide whether to continue the process or not after every new observation. The
decision has to be made solely based on previous information in real time. There is a
rich literature in sequential change-point detection analysis for univariate data; see, for
example, Page (1954), Shiryaev (1963), Roberts (1966), Lorden (1971), Siegmund (1985),
and Tartakovsky, Nikiforov, and Basseville (2014). Horv�ath et al. (2004) proposed a
sequential monitoring method to detect structural change based on weighted cumulative
sums (CUSUMs) of residuals, in which the unknown in-control parameter has been
replaced by its least squares estimate from the training observations. Furthermore, their
monitoring process continues until infinity when the null hypothesis is not rejected. In
practice, for most real-world applications, we cannot continue to monitor the process
until infinity if no change exists. Horv�ath, Kokoszka, and Steinebach (2007) further
investigated the monitoring process for a linear model that stops even if no change
point is detected after a certain number of observations. Zhou, Wang, and Tang (2015)
developed a method for sequential detection of structural changes in linear quantile
regression models. Chen (2019) proposed a new sequential change-point detection based
on the nearest neighbor information and applied to sequences of multivariate observa-
tions or non-Euclidean data.
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High-dimensional data analysis is a popular research area in statistics. Generally, data
for which the number of explanatory variables (p) exceeds the number of observations
(n) is referred to as high-dimensional data. In a real-world scenario, we often deal with
a large number of explanatory variables. For example, genomics and health care data
sets have a large number of explanatory variables for each observation. For a large num-
ber of predictor variables, there is a chance that these variables may correlate with other
explanatory variables. Also, too many variables could lead to overfitting in a regression
model. On the other hand, one can use variable selection procedures such as forward
selection, backward elimination, or the stepwise method to select the best subset of
predictor variables and to attain parsimony and best fit. These methods, however, have
certain limitations for collinear regressors and lead to inaccurate results for high-
dimensional data.
The ordinary least squares method is not consistent in the setting of p> n. Penalized

regression techniques have been proven to be effective for modeling high-dimensional
data; see, for example, Tibshirani (1996) and Hastie, Tibshirani, and Friedman (2009).
The idea behind the penalized regression method is to perform linear regression while
shrinking the coefficients toward zero. The benefit of this approach is that shrinking the
coefficient estimates can significantly reduce their variances. Two well-known techni-
ques for shrinking the regression coefficients toward zero are ridge regression and least
absolute shrinkage and selection operator (LASSO); see Tibshirani (1996). The major
difference between them is that ridge (‘2 penalty) regression shrinks all of the coeffi-
cients to a nonzero value, whereas LASSO (‘1 penalty) shrinks some of the coefficients
and sets other to be exactly equal to zero. Thus, the LASSO method performs both vari-
able selection and parameter estimation simultaneously. The LASSO-type estimator was
proposed by Knight and Fu (2000), where they minimized the residual sum of squares
and penalty proportions to the model’s parameter. Other penalized regression techni-
ques include smoothly clipped absolute deviation (SCAD; Fan and Li 2001), Elastic Net
(Zou and Hastie 2005), and adaptive LASSO (Zou 2006). The SCAD penalty function is
computationally feasible and performs both variable selection and estimation simultan-
eously for high-dimensional data. Fan and Li (2001) established the asymptotic proper-
ties of SCAD penalized likelihood. In addition, the SCAD penalty function satisfies the
oracle property; see Fan and Li (2001) and Fan and Peng (2004).
A handful of literature is available for using LASSO estimation in change-point ana-

lysis. J. Kim and Kim (2008) studied data with asymptotic behavior of the least squares
estimators in segmented multiple regression with one or more change points.
Harchaoui and L�evy-Leduc (2010) proposed an approach for estimation of the location
of change points in one-dimensional piecewise constant signals observed with white
noise. They used a penalized least squares criterion with a ‘1 penalty. Ciuperca (2014)
studied the model selection procedure for adaptive LASSO with multiple change points
and investigated its asymptotic properties. Ciuperca (2015) investigated the CUSUM test
statistic based on adaptive LASSO for detecting change points sequentially in a linear
model. The detection of change points in high-dimension data using low-dimensional
compressive measurements in an online setting was considered in Chi and Wu (2015).
Recently, Ratnasingam and Ning (2021) studied the sequential change-point detection
method to monitor structural changes in penalized quantile regression models. To the
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best of our knowledge, no previous study investigated the use of the SCAD penalty with
a regression model for sequential change-point analysis for high-dimensional data sets.
In this article, we study the sequential change-point problem under a high-dimensional
scenario. We propose test statistics for sequential change-point detection procedures
using a SCAD penalized regression model with a finite monitoring horizon for high-
dimensional data.
This article is organized as follows. In Section 2, we describe notations, assumptions,

the variable selection procedure, and oracle properties for the SCAD penalized regres-
sion model. In Section 3, we propose test statistics for open-ended and closed-ended
procedures. Corresponding asymptotic results are established. In Section 4, simulations
are conducted under different settings to investigate the performance of the proposed
methods. A real data application is given in Section 5 to illustrate the detecting process.
Some discussion and conclusions provided in Section 6.

2. SCAD PENALIZED REGRESSION

Suppose we have a random sample fYi, xi1, :::, xipg, i ¼ 1, :::,m: Consider the model

Y ¼ Xbþ E , (2.1)

where Y ¼ ðY1, :::,YmÞ is a vector of responses, X is an m� p matrix of predictors with
ith row x>i ¼ ðxi1, :::, xipÞ, where i ¼ 1, :::,m; and jth column Xj ¼ ðx1j, :::, xmjÞ>,
where j ¼ 1, :::, p; b ¼ ðb1, :::, bpÞ> is a p-vector of unknown parameters and E ¼
ðE1, :::, EmÞ> represents an m-vector of independent and identically distributed (i.i.d.)
random variables with mean 0 and variance r2:
Tibshirani (1996) introduced the LASSO method for variable selection and estima-

tion. The LASSO method can be written as the minimization of the least squares penal-
ized by the norm ‘1 of the vector b. LASSO can successfully shrink some coefficients to
be exactly zero and give a sparse solution. Zhao and Yu (2006) noted that if an irrele-
vant predictor is highly correlated with the predictors in the true model, LASSO may
not be able to distinguish it from the true predictors with any amount of data and any
amount of regularization. Further, Knight and Fu (2000) proved that the LASSO estima-
tor is only n1=2-consistent under some regularity conditions. Thus, it cannot achieve
simultaneous consistent variable selection and estimation. Therefore, the oracle property
does not hold for LASSO; see for example, Fan and Li (2001) and Zou (2006). To
improve the performance of LASSO, Fan and Li (2001) introduced an oracle selection
procedure referred to as SCAD. The goal of SCAD is to penalize small coefficients heav-
ily and large coefficients lightly. The penalized least squares estimator, denoted by

b̂
SCAD
m , can be defined as

b̂
SCAD
m ¼ argmin

b2RP

�Xm
i¼1

ðYi � x>i bÞ2 þ
Xp
j¼1

pkmðbjÞ
�
, (2.2)

where pkmð�Þ is the penalty function with tuning parameter km. The SCAD penalty func-
tion pkmð�Þ is symmetric and continuously differentiable on ð�1, 0Þ [ ð0,1Þ: For given
a> 2 and km > 0, the SCAD penalty pkmðbÞ is given by
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pkmðbÞ ¼
kmjbj if jbj � km,
�ðb2 � 2akmjbj þ k2mÞ= 2ða� 1Þ½ � if km < jbj � akm,
ðaþ 1Þk2m=2 if jbj > akm,

8<
:

where kmð0 < km < 1Þ and a are two unknown parameters. The function is continu-
ous and its first derivative is

p0kmðbÞ ¼ km

�
Iðjbj � kmÞ þ

ðakm � bÞþ
ða� 1Þkm Iðjbj > kmÞ

�
: (2.3)

Fan and Li (2001) suggested a¼ 3.7 as a good choice for various problems. In this
research, a was set to 3.7 and km was selected by the cross-validation method. The tun-
ing parameter km controls the amount of shrinkage. In particular, the amount of shrink-
age is proportional to the value of km. Fan and Li (2001) noted that the SCAD penalty
function satisfies three requirements for variable selection and coefficient estimation,
including asymptotic unbiasedness, sparsity, and continuity of the estimated parameters.
For the sparse model, we consider a situation where most regression coefficients are

exactly zero; that is, there are only a few predictors whose regression coefficients are
nonzero. Without loss of generality, we assume that the first q regression coefficients
are nonzero and the remaining ðp� qÞ regression coefficients are zero. Let X ¼
ðXð1Þ,Xð2ÞÞ, where Xð1Þ is the first m� q submatrix and Xð2Þ is the last m� ðp� qÞ sub-
matrix of X. Similarly, we denote b ¼ ðbð1Þ, bð2ÞÞ: Let Cm ¼ 1

mX>X and Cðu, vÞ
m ¼

1
mXðuÞ>XðvÞ, for u, v ¼ 1, 2: Let b0 ¼ ðb01, :::, b0pÞ be the true unknown parameter vec-

tor. Let A ¼ fj 2 f1, :::, pg : b0j 6¼ 0g be the index set of the nonzero coefficients for

the true parameter, where b0j is the jth component of the true parameter vector b0. We

denote the SCAD penalized regression estimate by b̂
SCAD
m : Let A� ¼ fj 2 f1, :::, pg :

b̂
SCAD
mj 6¼ 0g be the index set of the SCAD penalized regression estimator calculated

using the historical sample size m, where b̂
SCAD
mj is the jth element of the SCAD penal-

ized regression estimator b̂
SCAD
m : To obtain the limiting distribution, we make the fol-

lowing assumptions, also called the regularity conditions, which are needed to derive
the asymptotics of the estimators:

A1. The model errors E1, :::, Em, Emþ1, ::: are i.i.d. random variables. EðEiÞ ¼
0,VarðEiÞ ¼ r2 < 1 and EðjE1jqÞ < 1 for some q � 2:

A2. There exists a positive constant M1 such that

1
m
X>
j Xj � M1 for all j ¼ 1, :::, p and for all m:

A3. There exists a positive constant M2 such that a0Cð1, 1Þ
m a � M2 for all jjajj22 ¼ 1:

A4. q ¼ Oðmc1Þ for some 0 < c1 < 1:
A5. There exist positive constants c2 and M3 such that c1 < c2 � 1 and
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mð1�c2Þ=2 min
j¼1, :::, q

jbjj � M3:

A6. Suppose that p � m and Cm is nonsingular, with the smallest eigenvalue and the
largest eigenvalue bounded by L.

The above are the commonly used regularity conditions in a high-dimensional linear
model. Assumption A1 was used in Zou (2006) and Ciuperca (2014). Zhao and Yu
(2006) used A2–A5 to prove the model selection consistency of the LASSO estimator.
Y. Kim, Choi, and Oh (2008) used A2–A5 to show that the SCAD estimator has the
oracle property on high-dimensional problems.

Remark 2.1. Under a high-dimensional setting, where p>m, A6 cannot be satisfied.
However, if we find a subset G of f1, :::, pg such that f1, :::, qg 2 G and the design
matrix XG ¼ ðXj, j 2 GÞ satisfies A6, then we can use XG to find the oracle estimator.
For more details, we refer the reader to Y. Kim, Choi, and Oh (2008).

For fixed historical sample size m, if assumptions A1–A5 are met, then the SCAD
penalized estimator satisfies the oracle property, meaning

i. Consistency in variable selection, limm!1 PðA� ¼ AÞ ¼ 1:

ii.
ffiffiffiffi
m

p
Amðm�1X>

AXA=r2Þ1=2ðb̂SCAD
m � b0Þ ! Nð0,VÞ, where Am is an arbitrary

matrix such that AmA
>
m ! V and V is a q � q nonnegative symmetric matrix

and contains the elements of the matrix Cm in the set A:

3. SEQUENTIAL CHANGE-POINT PROBLEM

Let m be the size of the historical sample. We assume that there is no change in the his-
torical sample. Similar to Chu, Stinchcombe, and White (1996), we use the historical
sample to estimate the prechange coefficients of the SCAD penalized regression model.
After we select the significant explanatory variables, the future incoming observations
fYi, xi1, :::, xipg, i ¼ mþ 1,mþ 2, ::: are monitored sequentially following the historical
sample size m. Let Tm be the monitoring horizon. The linear model after historical
observations m is

Yi ¼ x>i bi þ Ei, i ¼ mþ 1,mþ 2, ::: (3.1)

At each time point i, our goal is to test whether we have the same model as the one
using the historical sample size m. Under the null hypothesis, if there is no change in
the coefficients,

H0 : bi ¼ b0 for i ¼ mþ 1,mþ 2, ::: (3.2)

Under the alternative hypothesis, we consider at an unknown time point k the coeffi-
cients change from b0 to b1. There exists k � 1 such that

SEQUENTIAL ANALYSIS 5



H1 :
bi ¼ b0; i ¼ mþ 1,mþ 1, :::,mþ k,
bi ¼ b1; i ¼ mþ kþ 1, :::mþ Tm and b0 6¼ b1:

�
(3.3)

According to Horv�ath et al. (2004),

Cðm, kÞ ¼ 1
r̂m

���� Xmþk

i¼mþ1

Ê i

����, (3.4)

where Ê i ¼ Yi � X>
i b̂

SCAD
m for i ¼ mþ 1,mþ 2, ::: and r̂2

m is the error variance, defined as

r̂2
m ¼ 1

ðm� p�Þ
Xm
i¼1

ðYi � x>i b̂
SCAD
m Þ2, (3.5)

where p� is the number of nonzero coefficients of the SCAD penalized estimator. For a
given constant c 2 ½0, 1=2Þ, the gðm, k, cÞ is called the normalizing function and is
defined as

gðm, k, cÞ ¼ m1=2 1þ k
m

� �
ð k
kþmÞc, (3.6)

where c is called the control parameter. We propose the test statistic for monitoring
structural change:

X ¼ sup
1�k�Tm

Cðm, kÞ
gðm, k, cÞ : (3.7)

3.1. Open-Ended Procedure

The monitoring process examined by Horv�ath et al. (2004) can continue possibly to
infinity if no alarm is raised. This is referred to as an open-ended procedure. Thus, in
the open-ended procedure, the monitoring horizon Tm ¼ 1: Once the monitoring pro-
cess stops, subsequent rejection of the null hypothesis is defined as the stopping time of
the monitoring scheme. The stopping time of the proposed test statistic is defined as

KðmÞ ¼ inffk � 1; Cðm, kÞ � gðm, k, cÞcaðcÞg,
1 for all k ¼ 1, 2, 3, :::,

�
(3.8)

where caðcÞ is the critical value that can be obtained through simulations at a given sig-
nificance level a 2 ð0, 1Þ: Under the null hypothesis,

lim
m!1PðKðmÞ < 1Þ ¼ a, (3.9)

and under the alternative hypothesis,

lim
m!1PðKðmÞ < 1Þ ¼ 1: (3.10)

3.2. Closed-Ended Procedure

In the closed-ended procedure, the monitoring process stops after a fixed number of
observations even if no change is observed; see, for example, Horv�ath, Kokoszka, and
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Steinebach (2007) and Zhou, Wang, and Tang (2015). Let N> 0. Suppose Tm < 1 with
limm!1 Tm=m ¼ N: Under the closed-ended procedure, the stopping time of the pro-
posed test statistic when the monitoring process stops and rejects the null hypothesis is
defined as

K�ðmÞ ¼ inffk � 1; Cðm, kÞ � gðm, k, cÞc�aðcÞg,
Tm for all k ¼ 1, :::,Tm,

�
(3.11)

where c�aðcÞ is the ð1� aÞth quantile of the asymptotic distribution obtained in
Theorem 3.1. Under the null hypothesis,

lim
m!1PðK�ðmÞ < 1Þ ¼ a, (3.12)

and under the alternative hypothesis,

lim
m!1PðK�ðmÞ < 1Þ ¼ 1: (3.13)

The monitoring process stops immediately for large c. Thus, a large value of c is pre-
ferred when the change in the regression coefficients happens shortly after m.

Theorem 3.1. Under assumptions A1–A5, if the null hypothesis holds, for an open-ended
procedure,

lim
m!1PðX � caðcÞÞ ¼ P

�
sup
0�t<1

jjWðtÞjj1
tc

� caðcÞ
�
,

and for closed-ended procedure,

lim
m!1PðX � c�aðcÞÞ ¼ P

�
sup

0�t�N=ðNþ1Þ

jjWðtÞjj1
tc

� c�aðcÞ
�
,

where fWðtÞ, 0 � t < 1g denotes the l-dimensional Wiener process, where l is the num-
ber of significant features in the model based on the historical data.

Using Theorem 3.1, under the null hypothesis, we can obtain the asymptotic distribu-
tion of the CUSUM test statistic for the open- and closed-ended procedures. The
asymptotic critical value caðcÞ is obtained from

P

�
sup
0�t<1

jjWðtÞjj1
tc

� caðcÞ
�

¼ a,

and the asymptotic critical value for the closed-ended procedure c�aðcÞ can be obtained
from

P

�
sup

0�t�N=ðNþ1Þ

jjWðtÞjj1
tc

� c�aðcÞ
�

¼ a,

where a 2 ð0, 1Þ and the tuning parameter 0 � c < 1=2: We obtain asymptotic critical
values through simulation. First, we generate a sequence of i.i.d. l-dimensional random
vector ei ¼ ðei1, ei2, :::, eilÞ, where eij 	 Nð0, 1Þ: Define W�ðtÞ ¼ M�1=2PtM

i¼1 ei, where M
is a grid of 10,000. In each iteration, we calculate the test statistic maxjjW�ðtÞ=tcjj1 for
both open- and closed-ended procedures obtained over t 2 f1=M, 2=M, :::, 1g and t 2
f1=M, 2=M, :::,N=ðN þ 1Þg, respectively. The critical value for a level-a test can be
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estimated by the ð1� aÞ th quantile of the test statistics. The asymptotic critical values
are given in Tables 1 and 2. The results are based on 50,000 iterations.

Theorem 3.2. Under assumptions A1–A5, if the alternative hypothesis holds, we have

sup
1�k�Tm

Cðm, kÞ
gðm, k, cÞ ! 1 as m ! 1:

Proofs are given in the Appendix.

4. SIMULATION STUDIES

In this section, we conduct Monte Carlo simulations to evaluate the performance of the
sequential change-point detection procedure for both open- and closed-ended methods

Table 2. Asymptotic critical values for the closed-ended procedure when N 2 f2, 4, 6, 9g and c 2
f0:00, 0:15, 0:25, 0:35, 0:45, 0:49g, calculated on 50,000 replications.
c N=a 0.010 0.025 0.050 0.100 0.250

0.00 2 2.447139 2.211787 2.020908 1.815498 1.487324
4 2.686489 2.430562 2.222431 1.990774 1.629909
6 2.785824 2.514810 2.297350 2.057684 1.688002
9 2.847110 2.572124 2.351546 2.108416 1.730943

0.15 2 2.649895 2.404296 2.201695 1.987356 1.647810
4 2.829618 2.569068 2.355556 2.121323 1.759586
6 2.902434 2.632341 2.411011 2.170361 1.801032
9 2.948248 2.676014 2.446939 2.209239 1.833419

0.25 2 2.816933 2.561952 2.359019 2.134979 1.790156
4 2.954011 2.681545 2.469789 2.236936 1.874830
6 3.004398 2.735205 2.510444 2.276272 1.907793
9 3.045116 2.767461 2.539297 2.300939 1.930600

0.35 2 3.026753 2.766572 2.563014 2.338523 1.994179
4 3.122079 2.854851 2.635548 2.404585 2.049275
6 3.149867 2.883356 2.661403 2.427641 2.070099
9 3.171244 2.904029 2.679934 2.445955 2.085801

0.45 2 3.400988 3.136741 2.935825 2.713851 2.375432
4 3.433242 3.167601 2.965047 2.739027 2.400873
6 3.442337 3.179246 2.974512 2.748497 2.408898
9 3.446603 3.188064 2.981583 2.754953 2.414795

0.49 2 3.732576 3.463671 3.257303 3.037973 2.688347
4 3.744958 3.474354 3.268213 3.050684 2.701117
6 3.747245 3.478562 3.271668 3.054774 2.706148
9 3.749885 3.479867 3.274127 3.057681 2.708363

Table 1. Asymptotic critical values for the open-ended procedure for various c 2
f0:00, 0:15, 0:25, 0:35, 0:45, 0:49g, calculated on 50,000 replications.
c=a 0.010 0.025 0.050 0.100 0.250

0.00 3.019468 2.734264 2.486683 2.234026 1.833559
0.15 3.078669 2.795639 2.554139 2.303043 1.911031
0.25 3.135282 2.864542 2.626865 2.372679 1.990685
0.35 3.247067 2.970504 2.742768 2.498331 2.128268
0.45 3.479984 3.229682 3.008465 2.784761 2.434316
0.49 3.764611 3.508515 3.303435 3.073143 2.720441
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for the SCAD penalized regression model. To evaluate how well the proposed method
performs, we consider three criteria that are commonly used to determine the goodness
of a sequential change-point detection procedure. They are

1. Type I error rate: Close to the nominal level.
2. Power of the test: Preferably close to 1.
3. Detection time under the alternative hypothesis: Stop as soon as possible after a

change is noticed.

First, we evaluate the Type I errors of the proposed test. Under the null hypothesis,
the data are obtained from the model

Yi ¼ x>i b0 þ Ei, i ¼ 1, :::,mþ Tm :

We consider the number of explanatory variables p¼ 10. The following two settings
are considered. The first setting is used to evaluate the Type I errors of the proposed
method. In the first case, the true parameter vectors b0 2
f�2, 0, 2, 0, 10, 1, 0, 0, 8, � 5g and Xi for all i 2 f1, :::, 10gnf3, 4, 5g have a
standard normal distribution N(0, 1) and X3 	 Nð2, 1Þ, X4 	 Nð4, 1Þ, and X5 	
Nð5, 1Þ: In the second setting, under the null hypothesis, the true parameter vectors
b0 2 f0, 0, 2, 0, 0, 1, 0, 0, 1, 0g, and under the alternative hypothesis, we consider
the parameter vector b1 2 f0, 0, 0, 3, 0, 0, 1, 0, 0, � 1g: We consider the two dif-
ferent distributions of the explanatory variables X1, X2, :::,X10: Under H0, Xi for all i 2
f1, :::, 10gnf3, 4, 5g have a standard normal distribution N(0, 1) and X3 	 Nð2, 1Þ, X4 	
Nð4, 1Þ, and X5 	 Nð5, 1Þ: The second distribution for the ith explanatory variable is
Xi þ 0:8, where Xi 	 Nð0, 1Þ for all i 2 f1, :::, 10g: Moreover, for both settings, the
model errors Ei are i.i.d. N(0, 1).
Table 3 summarizes the Type I error for both open- and closed-ended procedures.

The various control parameter c values and the different sizes of the historical observa-
tions m are considered. c 2 f0, 0:25, 0:45g and m 2 f75, 100, 200g: The results are based

Table 3. Type I errors of both open- and closed-ended procedures for SCAD penalized regression for
various values of c and the nominal significance level a ¼ 0:05:

Closed-ended Open-ended

m N=c 0 0.25 0.45 0 0.25 0.45

75 2 0.047 0.053 0.044 0.013 0.024 0.036
4 0.038 0.037 0.037 0.020 0.028 0.035
10 0.040 0.042 0.036 0.031 0.033 0.035
20 0.050 0.052 0.046 0.046 0.047 0.045

50 0.041 0.041 0.036 0.040 0.039 0.037
100 2 0.035 0.038 0.036 0.010 0.019 0.030

4 0.034 0.036 0.031 0.017 0.026 0.030
10 0.039 0.038 0.038 0.030 0.034 0.036
20 0.033 0.032 0.025 0.028 0.028 0.025
50 0.034 0.034 0.027 0.032 0.033 0.027

200 2 0.028 0.029 0.031 0.009 0.016 0.028
4 0.028 0.031 0.030 0.015 0.020 0.024
10 0.041 0.039 0.037 0.030 0.034 0.036
20 0.026 0.026 0.024 0.020 0.024 0.023
50 0.030 0.032 0.028 0.029 0.029 0.027
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on 2,500 iterations. The Type I errors based on the closed-ended procedure is always
larger than the Type I errors obtained from the open-ended procedure. For small c, the
Type I errors of the open-ended procedure are below the nominal level 0.05. When the
open-ended procedure is considered, smaller N provides slightly deflated Type I errors.
Thus, for small N, we suggest larger values of c close to 0.5. Type I errors are compared
in Figure 1.
We conducted Monte Carlo simulation to investigate the performance of the pro-

posed method. First, we performed power analysis for different control parameter c 2
f0, 0:25, 0:45g while changing the size of a test a, considering a 2 f0:025, 0:05, 0:1g:
Further, the simulations were carried out under various true change-point locations
k� 2 f1, 25, 75g with different historical sample sizes m 2 f75, 100, 200g: We evaluated
the power of the test based 1000 simulations and the results are summarized in Table 4.
The results are sketched in Figure 2.
The five-number summary of the stopping time for both open- and closed-ended

procedures summarized in Tables 5 and 6 and sketched in Figure 3. In all cases, the
processes were monitored from ðmþ 1Þ until time 9m. To see the effect of the histor-
ical sample size, we performed the simulations for various m, such as m 2
f100, 300, 600g: Further, we changed the true change-point location, considering k� 2
f1, 25, 100g and level a 2 f0:025, 0:05, 0:1g: Clearly, the selection of c values influences
the stopping time. As mentioned in Horv�ath et al. (2004), it is clear that smaller values
of c result in a longer time to detect the structural change, whereas larger c values result
in faster detection. We compared the estimated density of the stopping time at various
change-point locations, historical sample size, control parameter, and test size (see

Figure 1. Type I error comparison for open- and closed-ended procedures.
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Table 4. Power comparison for closed-ended procedure for change points k� 2 f1, 25, 100g, a 2
f0:025, 0:05, 0:1g, and c 2 f0, 0:25, 0:45g:

k� ¼ 1 k� ¼ 25 k� ¼ 75

c a/m 75 100 200 75 100 200 75 100 200

0.00 0.025 0.948 0.977 0.995 0.936 0.956 0.996 0.857 0.943 0.996
0.050 0.993 0.999 0.999 0.999 0.997 1 0.988 0.995 1
0.100 1 1 1 1 1 1 1 1 1

0.25 0.025 0.925 0.962 0.991 0.876 0.933 0.992 0.757 0.876 0.992
0.050 0.969 0.988 0.999 0.973 0.989 0.999 0.952 0.985 0.999
0.100 0.999 1 1 1 1 1 0.999 1 1

0.45 0.025 0.860 0.930 0.985 0.756 0.881 0.970 0.552 0.731 0.970
0.050 0.937 0.965 0.995 0.918 0.960 0.997 0.846 0.931 0.997
0.100 0.991 0.997 0.999 0.992 0.999 1 0.992 0.997 1

Figure 2. Power comparison for closed-ended procedure with a ¼ 0:05:

Table 5. Five-number summary for the detection time for the open-ended procedure with k� 2
f1, 25, 100g, c 2 f0, 0:25, 0:45g, and a ¼ 0:05:

m¼ 100 m¼ 300 m¼ 600

c Summary/k� 1 25 100 1 25 100 1 25 100

0.00 min 4 27 72 6 31 102 10 33 109
Q1 12 38 122 21 47 127 30 56 134
Med 18 45 134 29 55 137 39 66 146
Q3 26 57 141 40 67 152 48 79 161
max 123 200 353 145 159 263 192 227 256

0.25 min 2 9 9 2 26 75 3 27 103
Q1 5 34 119 7 36 118 9 39 121
Med 8 40 130 12 42 128 15 45 130
Q3 14 49 147 20 52 141 25 56 144
max 102 197 353 95 149 244 153 187 239

0.45 min 1 1 1 2 3 3 2 13 13
Q1 2 32 119 3 32 115 3 32 115
Med 4 37 131 4 37 124 4 37 124
Q3 7 46 148 8 44 137 8 44 135
max 98 200 359 80 123 243 66 153 237
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Figure 4). When a changes from 0.025 to 0.05, the estimated densities are roughly iden-
tical. Not surprising, the historical sample m has a significant influence on the stopping
time determination. When m changes from 100 to 300, we observe a high variability in
the estimated densities. A small variation can be observed between the estimated den-
sities for a fixed control value c irrespective of the historical sample size.

Table 6. Five-number summary for the detection time for the closed-ended procedure with k� 2
f1, 25, 100g, c 2 f0, 0:25, 0:45g, and a ¼ 0:05:

m¼ 100 m¼ 300 m¼ 600

c Summary/k� 1 25 100 1 25 100 1 25 100

0.00 min 4 26 65 6 31 102 9 33 109
Q1 11 37 120 20 45 125 28 54 132
Med 16 44 132 27 53 135 37 64 144
Q3 24 55 148 38 65 149 50 76 158
max 122 197 335 144 157 262 192 226 255

0.25 min 2 8 8 2 26 74 3 27 102
Q1 5 33 118 7 36 118 8 38 120
Med 8 39 129 12 41 127 14 45 129
Q3 14 48 145 20 51 140 24 55 142
max 102 194 335 95 149 243 153 163 239

0.45 min 1 1 1 2 3 3 2 4 4
Q1 2 32 119 3 32 115 3 32 115
Med 4 37 131 4 37 124 4 36 124
Q3 7 46 147 8 44 137 8 44 135
max 54 200 359 80 123 243 66 151 236

Figure 3. Stopping time comparison for closed- and open-ended procedures with k� 2 f1, 25, 100g,
c 2 f0, 0:25, 0:45g, a ¼ 0:05, and various historical sample sizes.
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4.1. Large p

To study the performance of the monitoring process in a high-dimensional setting, we
conducted another simulation study. We generated high-dimensional data sets with (p,
m), considering ð100, 75Þ, ð200, 100Þ, and (300, 200). We considered the following two
settings. In the first setting, the nonzero components of the true parameters are b0, 1 ¼
�5, b0, 2 ¼ 2, b0, 3 ¼ 5, b0, 4 ¼ 1, b0, 5 ¼ �3, b0, 61 ¼ �10, and b0, 91 ¼ 8: The pre-
dictor variables Xi for all i 2 f1, :::, pgnf3, 4, 5g have a standard normal distribution
N(0, 1) and X3 	 Nð2, 1Þ, X4 	 Nð4, 1Þ, and X5 	 Nð5, 1Þ:
In the second setting, under the null hypothesis, the true parameter vectors b0, 1 ¼

�1, b0, 2 ¼ 1, b0, 3 ¼ �1, b0, 4 ¼ 4, b0, 5 ¼ �2, b0, 58 ¼ �3, and b0, 86 ¼ 2, and under
the alternative hypothesis, we consider the parameter vector b1, 1 ¼ 3, b1, 2 ¼ 2, b1, 45 ¼
�2 and b1, 93 ¼ 2 and the two different distributions of the explanatory variables
X1,X2, :::,Xp: Under H0, Xi for all i 2 f1, :::, pgnf3, 4, 5g have a normal distribution N(0, 1)
and X3 	 Nð2, 1Þ, X4 	 Nð4, 1Þ and X5 	 Nð5, 1Þ: The second distribution for the ith
explanatory variable is Xi þ 0:8 where Xi 	 Nð0, 1Þ for all i 2 f1, :::, pg: Moreover, for both
settings, the model errors Ei are i.i.d. N(0, 1).
Table 7 summarizes the Type I error for both open- and closed-ended procedures.

The various control parameter values c 2 f0, 0:25, 0:45g and the different sizes of the
historical observations m 2 f75, 100, 200g are considered. The results are based on 2,500
iterations. Type I errors based on the closed-ended procedure are always larger than the
Type I errors based on the open-ended procedure. In the open-ended operation, it is

Figure 4. Estimated density of the stopping time for k� ¼ f5, 25, 100g and c 2 f0, 0:25, 0:45g:
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vital to properly select the value of the control parameter. Type I errors are compara-
tively low in the open-ended procedure for small c. When the open-ended procedure is
considered, smaller N provides slightly deflated Type I errors and it improves for large
N. Thus, for small N, we recommend larger tuning parameter values close to 0.5. For
large (p, m), we deflated Type I errors for both open- and closed-ended procedures.
Type I errors are sketched in Figure 5.

Table 7. Type I errors of both open- and closed-ended procedures for SCAD penalized regression for
various values of c and the nominal significance level a ¼ 0:05:

Closed-ended Open-ended

(p, m) N=c 0 0.25 0.45 0 0.25 0.45

(100, 75) 2 0.041 0.046 0.040 0.012 0.022 0.035
4 0.043 0.045 0.038 0.025 0.034 0.034
10 0.037 0.038 0.035 0.028 0.033 0.033
20 0.044 0.043 0.034 0.036 0.039 0.033
50 0.048 0.047 0.046 0.047 0.046 0.046

(200, 100) 2 0.037 0.038 0.034 0.008 0.018 0.027
4 0.031 0.032 0.027 0.016 0.022 0.024
10 0.036 0.033 0.027 0.026 0.028 0.026
20 0.035 0.032 0.032 0.027 0.029 0.032
50 0.039 0.042 0.034 0.038 0.041 0.034

(300, 200) 2 0.028 0.030 0.030 0.008 0.016 0.024
4 0.024 0.027 0.022 0.012 0.016 0.020
10 0.025 0.026 0.022 0.019 0.022 0.020
20 0.022 0.019 0.026 0.017 0.018 0.025
50 0.032 0.028 0.024 0.030 0.027 0.024

Figure 5. Type I error comparison for open- and closed-ended procedures for various (p, m).

14 S. RATNASINGAM AND W. NING



Table 8. Power comparison for closed-ended procedure with k� 2 f1, 25, 75g, a 2
f0:025, 0:05, 0:1g, c 2 f0, 0:25, 0:45g, and p 2 f100, 200, 300g:

k� ¼ 1 k� ¼ 25 k� ¼ 75

c a/m 75 100 200 75 100 200 75 100 200

p¼ 100

0.00 0.025 0.962 0.980 0.999 0.935 0.970 0.999 0.875 0.938 0.996
0.050 0.990 0.996 1 0.994 0.998 1 0.983 0.996 1
0.100 1 1 1 1 1 1 1 1 1

0.25 0.025 0.941 0.969 0.999 0.886 0.946 0.997 0.779 0.875 0.993
0.050 0.977 0.992 1 0.978 0.992 1 0.967 0.984 0.999
0.100 0.998 0.998 1 0.999 1 1 1 1 1

0.45 0.025 0.874 0.936 0.999 0.768 0.879 0.995 0.599 0.727 0.976
0.050 0.948 0.973 0.999 0.936 0.965 0.999 0.876 0.920 0.997
0.100 0.989 0.996 1 0.995 0.998 1 0.990 0.997 1

p¼ 200

0.00 0.025 0.943 0.969 1 0.925 0.964 1 0.866 0.932 0.994
0.050 0.990 0.993 1 0.993 0.998 1 0.984 0.990 1
0.100 0.998 1 1 1 1 1 1 1 1

0.25 0.025 0.911 0.954 1 0.876 0.935 0.998 0.780 0.866 0.990
0.050 0.969 0.986 1 0.978 0.991 1 0.963 0.981 0.999
0.100 0.996 0.998 1 1 1 1 1 1 1

0.45 0.025 0.842 0.910 0.998 0.765 0.870 0.993 0.610 0.721 0.977
0.050 0.925 0.958 1 0.928 0.967 0.998 0.864 0.913 0.994
0.100 0.985 0.996 1 0.994 0.998 1 0.989 0.995 1

p¼ 300

0.00 0.025 0.946 0.976 1 0.921 0.966 0.999 0.887 0.944 0.999
0.050 0.982 0.993 1 0.990 0.998 1 0.994 0.997 1
0.100 1 1 1 1 1 1 1 1 1

0.25 0.025 0.915 0.962 0.999 0.886 0.932 0.999 0.785 0.875 0.992
0.050 0.967 0.988 1 0.976 0.992 0.999 0.964 0.986 1
0.100 0.998 1 1 1 1 1 1 1 1

0.45 0.025 0.859 0.928 0.996 0.793 0.869 0.996 0.624 0.746 0.968
0.050 0.931 0.968 0.999 0.926 0.967 0.999 0.868 0.928 0.994
0.100 0.985 0.994 1 0.994 0.998 1 0.988 0.999 1

Figure 6. Power comparison for closed-ended procedure with a ¼ 0:05:
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The power comparisons of the closed-ended procedure are given in Table 8. We
monitor the process until 9m observations. Figure 6 compares the power of the closed-
ended procedure. For large historical sample size m, the power is approximately equal
to 1 regardless of the a level. The five-number summary of the detection time for both
open- and closed-ended procedures is given in Tables 9–10 and the results are graphed
in Figure 7. The results are based on 2,500 iterations. As we mentioned earlier, larger c

Figure 7. Stopping time comparison for closed- and open-ended procedures with k� 2 f1, 25, 100g,
c 2 f0, 0:25, 0:45g, a ¼ 0:05, and various historical sample sizes.

Table 9. Five-number summary for the detection time for the open-ended procedure at various
change-point locations with c 2 f0, 0:25, 0:45g and a ¼ 0:05:

ðp,mÞ ! (100, 75) (200, 100) (300, 200)

c Summary/k� 1 25 75 1 50 100 1 100 200

0.00 min 2 26 44 2 33 33 3 101 151
Q1 7 33 90 8 62 118 14 124 235
Med 11 42 106 14 74 138 24 148 277
Q3 20 58 139 26 99 182 45 201 369
max 526 672 671 819 874 839 1,335 1,632 1,658

0.25 min 2 10 10 2 15 15 2 70 70
Q1 3 30 86 3 58 114 3 115 228
Med 4 35 99 4 65 130 6 131 260
Q3 7 45 127 8 88 167 10 165 340
max 354 522 664 251 761 897 166 1,433 1,653

0.45 min 1 1 1 2 1 1 2 2 2
Q1 2 29 86 2 56 113 2 112 227
Med 2 33 99 2 63 130 3 127 260
Q3 4 41 130 4 78 169 4 156 343
max 72 525 665 37 685 893 32 1,516 1,789
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values result in detecting the change immediately when the change occurs shortly after
the historical sample size m.
Figure 8 compares the estimated densities of the stopping time for various (p, m) and the

estimated densities of the stopping time for various (p, m) and the change-point locations.
We observe variation in density plots but decreases due to the large historical sample size.

Table 10. Five-number summary for the detection time for the closed-ended procedure at various
change-point locations with c 2 f0, 0:25, 0:45g and a ¼ 0:05:

ðp,mÞ ! (100, 75) (200, 100) (300, 200)

c Summary/k� 1 25 75 1 50 100 1 100 200

0.00 min 2 26 42 2 30 30 3 101 135
Q1 6 32 88 7 61 116 12 121 231
Med 10 40 102 12 71 134 22 142 268
Q3 18 54 132 23 94 173 41 187 350
max 525 608 670 874 870 890 1,167 1,481 1,782

0.25 min 2 6 6 2 15 15 2 41 41
Q1 3 29 85 3 57 113 3 114 226
Med 4 34 97 4 64 128 5 129 255
Q3 7 44 124 7 80 162 10 158 326
max 353 521 671 250 874 876 166 1,385 1,784

0.45 min 1 1 1 1 1 1 2 2 2
Q1 2 29 86 2 56 113 2 112 227
Med 2 33 99 2 63 129 3 126 258
Q3 4 41 128 4 78 167 4 155 341
max 43 525 664 37 685 893 32 1,472 1,789

Figure 8. Estimated densities of the stopping time at various change points and various (p, m).
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5. REAL DATA ANALYSIS

In this section, we apply the proposed method to a real data set. We consider gene
expression in mammalian eye data. The data set was originally described in Scheetz
et al. (2006). Laboratory rats were examined to learn about gene expression and regula-
tion in the mammalian eye. Inbred rat strains were crossed and tissue was extracted
from the eyes of 120 rats from the F2 generation. There are n¼ 120 observations and
p¼ 18,976 explanatory variables. The outcome variable y is gene expression measure-
ment for Trim32 and the explanatory variables are the gene expression measurements
for the remaining genes. The outcome variable y is graphed in Figure 9.
According to the graph, there is no obvious jump in the data in the first 50 observa-

tions. Therefore, we consider the first 50 observations as historical data. The proposed
method is applied for the control parameter value c ¼ 0:45 with a ¼ 0:05: The first
change point detected after the historical sample size m¼ 50 for a given control param-
eter value 0.45 is 8. That is, there is a change of gene expression of 58th rat comparing
to the first 57 rats. We also consider the change-point detection with the log-likelihood
method by assuming the normality of the data under the fixed sample size n¼ 120 situ-
ation. The result confirms that the change occurred at 58th observation. With the bin-
ary segmentation method, there is only one change in the data. Compared to change-
point detection with fixed sample size, the advantage of the sequential change-point
detection method is that only a few samples are needed to make decisions. In this appli-
cation, our method only requires 50 observations and our monitoring process stops
after 58 samples. The traditional log-likelihood method, however, requires all observa-
tions (n¼ 120) to estimate the change location. The change-point location correspond-
ing to c ¼ 0:45 is graphed in Figure 10.

Figure 9. Outcome of the gene expression measurement for Trim32 in the mammalian eye data.
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6. CONCLUSION

In this article, we proposed test statistics to monitor the structural change for high-dimen-
sional data using a SCAD penalized regression model for both open- and closed-ended pro-
cedures. The asymptotic critical values for both monitoring processes are obtained via
simulation. The Type I error probability of the open-ended procedure is smaller than that of
the closed-ended procedure. However, the Type I error probability improves when N
increases. Thus, the closed-ended procedure is superior for small Nð< 20Þ, and both closed-
and open-ended procedures behave similarly for large Nð� 20Þ: Moreover, the Type I error
decreases when the historical sample size m increases. The power of the test is generally
high and it is only affected by the size of a test. We computed the stopping time for both
open- and closed-ended procedures. It can be seen that the larger control parameter values
appear to detect the structural change much faster, whereas smaller control parameter values
result in greater delays in detection. Similar to Horv�ath et al.’s (2004) conclusion, if a change
occurs immediately after a historical sample size, we recommend a larger value of c close to
0.5 for high-dimensional data. In comparison to an open-ended procedure, the monitoring
process based on the closed-ended procedure is usually quicker. We estimated the density of
the stopping time for various scenarios. We applied the proposed sequential detection pro-
cedure to analyze gene expression in the mammalian eye data to locate the change point
sequentially. In the future, we would like to extend our approach using a nonparametric
method. We will also compare the performance between parametric and nonparamet-
ric methods.

Figure 10. The first change point detected in the mammalian eye data.
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APPENDIX: PROOFS OF THEOREMS

We will show that Theorems 3.1–3.2 hold under the historical sample size m.

Proof of Theorem 3.1. We consider the following relation:

Xmþk

i¼mþ1

Ê i ¼
Xmþk

i¼mþ1

Ei �
Xmþk

i¼mþ1

x>i ðb̂
SCAD
m � b0Þ : (A.1)

Because the SCAD estimate b̂
SCAD
mj satisfies the oracle property by consistency in variable selec-

tion, under assumptions A1–A5 we have limm!1 PðA� ¼ AÞ ¼ 1: Therefore, limm!1 PðA� \
Ac ¼ ;Þ ¼ 1: Let S 
 A� \A: By assumption A1 and sparsity property, we have that
ðX>

S
XSÞ�1 ¼ 1

m ðC�1
m Þ

S
ð1þ opð1ÞÞ, where ðCmÞS contains the elements of the matrix Cm with the

index in the set S:
Let WS ¼ 1

2 ð signðb̂SCAD
mj ÞÞj2S: In particular, WS is a column vector of dimension CardðSÞ:

Considering the Karush-Kuhn-Tucker optimality conditions, for every j 2 A \A�, we have

2X>
j ðY � Xb̂

SCAD
m Þ ¼ km signðb̂SCAD

mj Þ,
2X>

j ðE � Xðb̂SCAD
m � b0ÞÞ ¼ km signðb̂SCAD

mj Þ,

X>
j ðE � Xðb̂SCAD

m � b0ÞÞ ¼
1
2
km signðb̂SCAD

mj Þ:
Let Ac and A�c be the complementary sets of Ac and A�c, respectively. Following Ciuperca

(2015), for every j 2 S, we get

X>
j ðE � XSðb̂SCAD

m � b0ÞS � XAc\A� ðb̂SCAD
m � b0ÞAc\A� � XAc\A�cðb̂SCAD

m � b0ÞA\A�cÞ ¼ kmWS:

(A.2)

For any given � > 0 and large m, for the set j 2 S, we must have

P

�
X

�
b̂
SCAD
m � b0

�
¼ XS

�
b̂
SCAD
m � b0

�
S

�
> 1� �, (A.3)

Further, the relation (A.2) becomes

P

�
X>
S

�
E � XS

�
b̂
SCAD
m � b0

�
S

�
¼ 1

2
km sign

�
b̂
SCAD
mj

��
> 1� �: (A.4)

By assumption A2, the relation (A.4) implies that

Pððb̂SCAD
m � b0ÞS ¼ ðX>

S
XSÞ�1X>

S
E � kmðX>

S
XSÞ�1WSÞ > 1� �: (A.5)

Let Cm be a positively definite matrix. Then, ð1=mÞX>
S
XS ! Cm: Using assumption A1 and by

the central limit theorem, for every j 2 S and for large m, we have

X>
j E ¼ Opðm1=2Þ: (A.6)

Following Y. Kim, Choi, and Oh (2008), we have

b̂
SCAD
m ¼ 1

m
ðC�1

m ÞX>Y

¼ 1
m
ðC�1

m ÞX>ðE þ X>b0Þ

¼ 1
m
ðC�1

m ÞX>E þ b0

:
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Thus, for the set S,

ðb̂SCAD
m � b0ÞS ¼ 1

m
ðC�1

m Þ
S
X>
S
E

ffiffiffiffi
m

p ðb̂SCAD
m � b0ÞS ¼ 1ffiffiffiffi

m
p ðC�1

m Þ
S
X>
S
E
:

Because A 6¼ ; and by the oracle property, we have that

ðq=mÞ1=2ðb̂SCAD
m � b0ÞS ¼ Opð1Þ: (A.7)

Thus, we get

ðX>
S
XSÞ�1X>

S
E ¼ Opðm�1=2Þ: (A.8)

Thus, taking into account (A.5) and (A.6), we have

ðb̂SCAD
m � b0ÞS ¼ ðX>

S
XSÞ�1X>

S
Eð1þ opð1ÞÞ: (A.9)

So,

b̂
SCAD
m � b0 ¼ C�1

m
1
m

Xm
i¼1

xiEið1þ opð1ÞÞ

and we have

Xmþk

i¼mþ1

Ê i ¼
Xmþk

i¼mþ1

ðEi � x>i ðb̂
SCAD
m � b0ÞÞ

¼
Xmþk

i¼mþ1

Ei �
� Xmþk

i¼mþ1

xi

�>
C�1
m

1
m

Xm
j¼1

xjEjð1þ opð1ÞÞ:

Similarly, for all k � 1, we get

P

� Xmþk

i¼mþ1

x>i

�
b̂
SCAD
m � b0

�
¼
Xmþk

i¼mþ1

x>i,S

�
b̂
SCAD
m � b0

�
S

�
> 1� �, (A.10)

Putting together (A.5), (A.6), and (A.10) we obtain for the CUSUM of residuals

Xmþk

i¼mþ1

Ê i ¼
Xmþk

i¼mþ1

ðEi � x>i:Sðb̂
SCAD
m � b0ÞSÞ

¼
Xmþk

i¼mþ1

Ei �
Xmþk

i¼mþ1

x>i,Sðb̂
SCAD
m � b0ÞS

¼
Xmþk

i¼mþ1

Ei � ð
Xmþk

i¼mþ1

x>i, SÞðX>
S
XSÞ�1X>

S
Eð1þ opð1ÞÞ:

(A.11)

Now applying theorem 2.1 of Horv�ath et al. (2004) completes the proof. w

Proof of Theorem 3.2 . Let k� be the time that the change truly occurs after a historical sam-
ple size of length m. Let k0 ¼ mþ k�: By the alternative hypothesis (3.3), we have
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Xmþk0

i¼mþ1

Ê i ¼
Xmþk0

i¼mþ1

Ei þ
Xmþk��1

i¼mþ1
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SCAD
m Þ

S
þ
Xmþk0

i¼mþk�
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S
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Ei þ
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SCAD
m Þ

S
þ
Xmþk0

i¼mþk�
x>i,S ðb1 � b0Þ þ ðb0 � b̂

SCAD
m Þ

h i
S

¼
Xmþk0

i¼mþ1

Ei þ
Xmþk0

i¼mþ1

x>i,Sðb0 � b̂
SCAD
m Þ

S
þ
Xmþk0

i¼mþk�
x>i,Sðb1 � b0ÞS

:

But Theorem 3.1 yields that����Xmþk0

i¼mþ1
Ê i þ

�Xmþk0

i¼mþ1
xi,S

�>
ðb0 � b̂

SCAD
m Þ

S

����
gðm, k0, cÞ ¼ Opð1Þ:

Next we show that the relation (A.12) is true as m ! 1:

sup
1�k<1

���� Xmþk

i¼mþ1

Ê i �
Xmþk

i¼mþ1

Ei � k
m

Xm
i¼1

Ei

 !����
�

m1=2 1þ k
m

� ��
k

mþ k

�c

¼ opð1Þ : (A.12)

Let c1 be the first column of C. Combining (A.8), (A.9), and (A.10), we conclude

sup
1�k<1

1
gðm, k, cÞ

����
�

1
m

� Xmþk

i¼mþ1

xi,S

�>
ðC�1

m Þ
S
� k
m
c>1 C

�1
m

�Xm
j¼1

xjEjð1þ opð1ÞÞj

¼ Opðm1=2Þ sup
1�k�1

1
mgðm, k, cÞ

�
k
m

� �
m1=2 þ ðkþmÞ1=2 1

m

� �
þm�1=2

�

¼ sup
1�k�m

ðk=mÞm�1=2 þ ð1þ ðk=mÞÞm�1=2

ð1þ k=mÞððk=mÞ=ð1þ k=mÞÞc

¼ sup
1�k�m

ðk=mÞm�1=2 þ ð1þ ðk=mÞÞm�1=2

ðk=mÞcð1þ ðk=mÞÞ1�c

� sup
1�k�m

2c
��

k
m

�1�c

m�1=2 þ
�

k
m

��c

m�1=2

�
¼ sup

1�k�m
2cfm�1=2 þm�1=2g

¼ oð1Þ as m ! 1:

Similarly,

sup
m�k�1

ðk=mÞm�1=2 þ ð1þ ðk=mÞÞm�1=2

ð1þ k=mÞððk=mÞ=ð1þ k=mÞÞc ¼ oð1Þ :

Thus,

sup
1�k<1

1
gðm, k, cÞ

����
�

1
m

� Xmþk

i¼mþ1

xi,S

�>
ðC�1

m Þ
S
� k
m
c>1 C

�1
m

�Xm
j¼1

xjEjð1þ opð1ÞÞ
���� ¼ opð1Þ as m ! 1 :

Therefore, we have that� Xmþk0

i¼mþk�
xi,S

�>
ðb1 � b0ÞS ¼ ðk0 � k�ÞCð1, 1Þ

m
>ðb1 � b0ÞS þ Oððmþ k�Þ1=2Þ þ Oððmþ k0Þ1=2Þ:
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In particular, under alternative hypothesis (3.3), we have jCð1, 1Þ
m

>ðb1 � b0Þj > 0: Thus, we get

lim inf
m!1

����
�Xmþk0

i¼mþk�
xi,S

�>
ðb1 � b0ÞS

����
gðm, k0, cÞ > 0:

This completes the proof. w
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