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Abstract
In this article, we propose procedures based on the modified information criterion and
the confidence distribution for detecting and estimating changes in a three-parameter
Weibull distribution. Corresponding asymptotic results of the test statistic associated
the detection procedure are established.Moreover, instead of only providing point esti-
mates of change locations, the proposed estimation procedure provides the confidence
sets for change locations at a given significance level through the confidence distri-
bution. In general, the proposed procedures are valid for a large class of parametric
distributions under Wald conditions and the certain regularity conditions being satis-
fied. Simulations are conducted to investigate the performance of the proposedmethod
in terms of powers, coverage probabilities and average lengths of confidence sets with
respect to a three-parameterWeibull distribution. Corresponding comparisons are also
made with other existing methods to indicate the advantages of the proposed method.
Rainfall data is used to illustrate the application of the proposed method.

Keywords Change point · Confidence distribution · Information criterion · Weibull
distribution

1 Introduction

Change point analysis plays an important role in identifying points in time when the
probability distribution of stochastic processes or time series changes. When a change
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point exists, it is not advisable to perform a statistical analysis without taking into
account of the existence of that change point because it could lead tomisleading results.
The change point analysis attempts to identify the number of change point(s) and the
corresponding location(s). Change-point analysis has been extensively explored since
Page (1954, 1955). Sen and Srivastava (1975a, b) derived the exact and asymptotic
distribution of their test statistic for testing a single change in the mean of a sequence
of normal random variables. Worsley (1979) studied the power of likelihood ratio and
cumulative sum tests for a change in a binomial probability model. Vostrikova (1981)
proposed the binary segmentation procedure to detect multiple changes in the data set.
This approach has the advantage of detecting multiple structural changes recursively
and saving a great deal of computing time. Srivastava and Worsley (1986) studied the
multiple changes in the multivariate normal mean and approximated the null distribu-
tion of the likelihood ratio test statistic based on an improved Bonferroni inequality.
Chen and Gupta (1995) studied the likelihood procedure for testing the change point
hypothesis under themultivariate Gaussianmodel. Asymptotic results of the test based
on the likelihood ratio test can be found in Csörgő and Horváth (1997). Gurevich and
Vexler (2005) investigated the change-point problem in logistic regression.Wu (2008)
provided a simultaneous change-point analysis and variable selection in a regression
problem. Ning and Gupta (2009) studied the change-point problem for the general-
ized lambda distribution. Ramanayake and Gupta (2010) considered the problem of
detecting a change-point in an exponential distribution with repeated values. Chen and
Gupta (2012) discussed change-point problems for various parametric models with
different approaches. Arellano-Valle and C. L. and Loschi, R. H. (2013) presented a
Bayesian approach to study the change-point problem of the skew normal distribu-
tion. Ngunkeng and Ning (2014) studied the different change-point scenarios for the
skew normal distribution from the viewpoint of the model selection. Alghamdi et al.
(2018) proposed the change-point detection procedure for the Rayleigh Lomax dis-
tribution using Schwartz and modified information criterion. Recently, Ratnasingam
and Ning (2020) studied Confidence Distribution based approach for a skew normal
change-point model incorporating modified information criterion.

Among all the distributions, theWeibull distribution is one of the most widely used
lifetime distributions in reliability engineering. Due to its versatility, it can take on the
characteristics of other types of distributions based on the value of the shape parameter.
The three parameters Weibull distribution is defined as follows.

fX (x) =
⎧
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⎩
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β

(
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(
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and the cumulative distribution function is,

FX (x) = 1 − exp

(

−
(
x − θ

β

)α)

, (2)

where θ is the location parameter, β > 0 is the scale parameter, and α > 0 is the
shape parameter. On short hand, we denote W (θ, α, β). When θ = 0, it reduces to
two-parameter Weibull distribution.
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Jandhyala et al. (1999) proposed a change-point methodology for identifying
changes in the scale and shape parameters of a two-parameterWeibull distribution. The
asymptotic results of the likelihood ratio test (LRT) statistic for detecting unknown
changes in the parameterswere derived aswell asmaximum likelihood estimate (MLE)
of the unknown change point were obtained. They applied such aWeibull change-point
model to model minimal daily temperatures measured in Uppsala. Juruskova (2007)
investigated the asymptotic behavior of a log-likelihood ratio statistic for testing a
change in a three-parameter Weibull distribution. In this paper, we propose a detection
procedure based on the modified information criterion (MIC) to detect simultaneous
changes in parameters of a three-parameter Weibull distribution. Moreover, instead of
only providing point estimates of change locations, we propose a method based on the
confidence distribution (CD) to construct the confidence sets for change locations at a
given significance level. The proposed procedures can be applicable for a large class
of parametric distributions under Wald conditions and the certain regularity condi-
tions being satisfied. The interested readers may refer to Chen et al. (2006) for further
information.

This paper is organized as follows. In Sect. 2, the detecting procedure based on
the modified information criterion (MIC) is proposed. The asymptotic results of the
test statistic associated with the detecting procedure is shown to be a χ2 distribution.
In Sect. 3, we develop a change point detection procedure for the three-parameter
Weibull distribution. The procedure of constructing the confidence set of a change
through the confidence distribution is provided in Section 4. Simulations to investigate
the performance of the proposed procedures and compare them with other existing
methods in terms of powers, coverage probabilities, and lengths of confidence sets
are conducted in Sect. 5. A real data application is given in Sect. 6 to illustrate the
proposed procedure. Some discussion is provided in Sect. 7.

2 Methodology

2.1 Modified information criterion

In general, the change point problem involves hypothesis testing and parameter esti-
mation.More specifically, we need to test the null hypothesis of no change point versus
the alternative hypothesis of having at least one change. Further, we need to estimate
the corresponding location of the change point, if there is any. One of the most popular
methods of detecting change points is the use of model selection criteria. The Schwarz
information criterion (SIC) Schwarz (1978) is one of the popular criteria for model
selection. Zhang and Siegmund (2007) noted that the conventional SIC could detect
change points more effectively when changes take place in the middle of the data.
However, as Chen et al. (2006) pointed out, the conventional SIC method did not con-
sider the complexity of the model which may cause the redundancy of the parameter
space, especially a change occurring near the beginning or the end of data. To tackle
this issue, Chen et al. (2006) proposed the modified information criterion (MIC) by
adjusting the penalty term in SIC so that it reflects the contributions of change-point
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locations tomodel complexity. This approach assigns a larger penalty when the change
point location is close to the first or the last observation in the data set.

Let x1, . . . , xn be a random sample drawn from the density function f (x;Θ). The
Schwarz information criterion (SIC) proposed by Schwarz (1978) is given as follows.

SIC = −2�n(Θ̂) + dim(Θ̂) log(n), (3)

where �n(·) is the log-likelihood function of the random sample, Θ̂ is the maximum
likelihood estimate (MLE) of the parameter Θ and dim(Θ̂) is the dimension of the
parameter space.We denoteΘL ,ΘR to be the pre-change and post-change parameters
respectively and Θ̂L , Θ̂R to be the MLEs of the pre-change and post-change parame-
ters. Let k be the unknown change point location. The SIC in the context of having at
least one change point can be written as

SIC(k) = −2�n(Θ̂L(k), Θ̂R(k), k) +
{

2dim(Θ̂L(k)) + 1

}

log(n), (4)

where 1 ≤ k < n. Further, Eq. (3) defines the SIC under the null hypothesis of no
change, which we denote as SIC(n). However, as Chen et al. (2006) pointed out that
the SIC(k) defined in (4) does not consider the change location to be a parameter,
which may cause the redundancy of the parameter space when the change occurs near
the beginning, or the end of data. Therefore, the modified information criterion (MIC)
proposed by Chen et al. (2006) is given as follows. Under the null hypothesis of no
change, the MIC is defined as,

MIC(n) = −2�n(Θ̂) + dim(Θ̂) log(n), (5)

where Θ̂ maximizes �n(Θ). Therefore, under H0, both SIC(n) and MIC(n) are same.
Under the alternative hypothesis, the MIC is defined as,

MIC(k) = −2�n(Θ̂L(k), Θ̂R(k), k) +
{

2dim(Θ̂L(k)) +
(
2k

n
− 1

)2}

log(n), (6)

where 1 ≤ k < n. The difference between (4) and (6) is that (6) considers the
contribution of the change location k to the model as a parameter. If MIC(n) >

min1≤k<n MIC(k), then we select the model with a change point and the estimate of
the change point is given by

k̂ = argmin
1≤k<n

{MIC(k)}. (7)

Moreover, for the purpose of verifying the statistical significanceof the detected change
point, the associated MIC-based test statistic is defined as,

Sn = MIC(n) − min
1≤k<n

MIC(k) + dim(Θ) log(n), (8)
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where MIC(n) and MIC(k) are defined in (5) and (6) respectively. In particular, the
above standardization eliminates the constant term dim(Θ) log n in the difference
of MIC(n) and MIC(k). Chen et al. (2006) showed, under Wald conditions and the
regularity conditions, as n −→ ∞,

Sn −→ χ2
d , (9)

in distribution under H0, where d is the dimension ofΘ.For the purpose of comparison
later, we also provide the test statistic associated with the conventional SIC procedure
as follows.

Tn = SIC(n) − min
1≤k<n

SIC(k) + dim(Θ) log n. (10)

Chen and Gupta (1997) and Csörgő and Horváth (1997) pointed out the asymptotic
distribution of the related statistic for the SIC is found to have type I extreme value
distribution. We point out here that the test statistic Sn is constructed based on the
modified information criteria (MIC) of the null and the alternative hypotheses. When
we use the information criterion such as SIC andMIC, to detect changes by comparing
the values under the null hypothesis and the values under the alternative hypothesis
directly, one may raise the question that the small differences among SICs and MICs
might be caused by the fluctuation of the data, therefore, there may be no change at all,
especially when the SICs and MICs are very close. Therefore, to make the conclusion
about the change point statistically convincing, the constructed Sn is proposed with the
given significance level α and the associated critical value cα.Moreover, the test statis-
tic Tn is constructed based on the conventional information criterion SIC under the null
and the alternative hypotheses. SIC(n) is defined same as the Eq. (3), and SIC(k) is
given in the Eq. (4). The last constant term dim(Θ) log n in the Eq. (10) is to remove
the constant term dim(Θ) log n in the difference between SIC(n) and SIC(k). The
structure of Sn is similar. The main difference between Sn and Tn is that Sn incorpo-
rates the contribution of the change location k associated with the complexity of the
model, while Tn does not. As a result, Sn is desirable when the change point location
k is close to the first or the last observation in the data set.

3 MIC-based detection procedure for three-parameter weibull
distribution

Let X1, X2, . . . , Xn be a sequence of independent random variables belong to a
three-parameter Weibull distribution. The change point problem for a three-parameter
Weibull distribution is defined as follows.

Xi ∼
{
W (θL , αL , βL) i = 1, . . . , k

W (θR, αR, βR) i = (k + 1), . . . , n.
(11)
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where the pdf and cdf of three-parameter Weibull distribution are given in (1) and (2).
We are testing the following hypotheses.

H0 : θ1 = θ2 = · · · = θn = θ

α1 = α2 = · · · = αn = α

β1 = β2 = · · · = βn = β,

versus
H1 : θ1 = · · · = θk︸ ︷︷ ︸

θL

�= θk+1 = · · · = θn
︸ ︷︷ ︸

θR

α1 = · · · = αk︸ ︷︷ ︸
αL

�= αk+1 = · · · = αn
︸ ︷︷ ︸

αR

β1 = · · · = βk︸ ︷︷ ︸
βL

�= βk+1 = · · · = βn
︸ ︷︷ ︸

βR

,

where (α, θ, β), (αL , θL , βL) and (αR, θR, βR) are unknown parameters and need to
be estimated. Parameter k is the unknown change location and needs to be estimated
as well. Under the null hypothesis, the log-likelihood function is given as,

�n(θ, α, β) = n log(α) − n log(β) + (α − 1)
n∑

i=1

log

(
xi − θ

β

)

−
n∑

i=1

(
xi − θ

β

)α

(12)
The maximum likelihood estimators (MLEs) of θ, α and β can be obtained by setting
these partial derivatives equal to zero.

∂�n(θ, α, β)

∂α
= n

α
+

n∑

i=1

log

(
xi − θ

β

)

−
n∑

i=1

(
xi − θ

β

)α

log

(
xi − θ

β

)

∂�n(θ, α, β)

∂β
= −nα

β
+ α

β

n∑

i=1

(
xi − θ

β

)α+1

∂�n(θ, α, β)

∂θ
= (θ − 1)

n∑

i=1

(
1

xi − θ

)

+ α

β

n∑

i=1

(
xi − θ

β

)α−1

The MIC(n) is defined as,

MIC(n) = −2�n(θ̂ , α̂, β̂) + 3 log(n), (13)
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where θ̂ , α̂ and β̂ are the MLEs of θ, α and β respectively. Similarly, under the alter-
native hypothesis, the log-likelihood function is,

�H1 = l(k, θL , αL , βL , θR, αR, βR) =
k∑

i=1

log( f (xi , θL , αL , βL)

+
n∑

i=k+1

log( f (xi , θR, αR, βR)

=
{

k log(αL) − k log(βL) + (αL − 1)
k∑

i=1

log

(
xi − θL

βL

)

−
k∑

i=1

(
xi − θL

βL

)αL
}

+
{

(n − k) log(αR) − (n − k) log(βR)

+ (αR − 1)
n∑

i=k+1

log

(
xi − θR

βR

)

−
n∑

i=k+1

(
xi − θR

βR

)αR
}

(14)

The MLEs of the pre-change parameters θL , αL and βL can be obtained by solving
the following equations.

∂�H1

∂αL
= k

αL
+

k∑

i=1

log

(
xi − θL

βL

)

−
k∑

i=1

(
xi − θL

βL

)αL

log

(
xi − θL

βL

)

∂�H1

∂βL
= −kαL

βL
+ αL

βL

k∑

i=1

(
xi − θL

βL

)αL+1

∂�H1

∂θL
= (θL − 1)

k∑

i=1

(
1

xi − θL

)

+ αL

βL

k∑

i=1

(
xi − θL

βL

)αL−1

and the MLEs of the post-change parameters θR, αR and βR are the solutions of the
following equations.

∂�H1

∂αR
= (n − k)

αR
+

n∑

i=k+1

log

(
xi − θR

βR

)

−
n∑

i=k+1

(
xi − θR

βR

)αR

log

(
xi − θR

βR

)

∂�H1

∂βR
= −(n − k)αR

βR
+ αR

βR

n∑

i=k+1

(
xi − θR

βR

)αR+1

∂�H1

∂θR
= (θR − 1)

n∑

i=k+1

(
1

xi − θR

)

+ αR

βR

n∑

i=k+1

(
xi − θR

βR

)αR−1
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Now MIC(k) is given by,

MIC(k) = −2l(k, θ̂L , α̂L , β̂L , θ̂R, α̂R, β̂R) +
{

6 +
(
2k

n
− 1

)2}

log n. (15)

where (θ̂L , α̂L , β̂L) and (θ̂R, α̂R, β̂R) are MLEs of the parameters before and after the
change respectively. If there is a change, the change point k is estimated by the equation
(7). Furthermore, the MIC-based test statistics Sn can be obtained from (8). Under the
Wald conditions and the regularity conditions provided by Chen et al. (2006), we have
the following theorems.

Theorem 1 As n → ∞,
Sn −→ χ2

3 ,

in distribution under the null hypothesis.

Theorem 1 implies that Sn defined in (8) is consistent when there is a fixed amount of
change in the Weibull parameters at k, so that, k = n has a limit in (0,1), the model
with change point is chosen with the probability approaching to one.

Theorem 2 As n → ∞, the change point satisfies 0 < k/n < 1. Then the change
point estimator k̂ satisfies

k̂ − k = Op(1) .

The proofs of both Theorems are similar to ones in Chen et al. (2006). Theorem 2
implies that the change point k̂ achieves the best convergence rate.

4 Confidence curve for three parameter weibull distribution

In this section,weprovide steps to construct a confidence curve for the change point in a
three-parameterWeibull distributionbasedonMIC.Most existing literature on change-
point problem focused onproviding the point estimate of the change location.Recently,
Cunen et al. (2018) proposed the confidence curve along with the confidence sets for
the change point estimate through the confidence distribution (CD). The concept of a
CD has its roots in Fisher’s fiducial distribution. A CD is similar to a point estimator
or an interval estimator but it uses a sample-dependent distribution function on the
parameter space to estimate the parameter of interest. It also can provide confidence
intervals of all nominal levels for a parameter of interest through confidence curves.
More details and recent developments are referred to Xie and Singh (2013).

Cunen et al. (2018) used the traditional log-likelihood function to obtain the point
estimate of the change location, then constructed the confidence curves and confidence
sets at given nominal levels through CD. However, as we mentioned in Sect. 2, this
method does not consider the complexity of the model. Therefore, it is not effective
due to the possible redundancy of the parameter space, especially when the change
point is near the beginning or the end of data set. Thus, we modify their approach by
estimating the change location k̂ using (7). The confidence curve for a three-parameter
Weibull distribution can be obtained as follows.
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Step 1: The profile log-likelihood function can be obtained by maximizing the
log-likelihood function (14) over the parameters for each candidate value of k
where 1 ≤ k < n − 1.

�prof (k) = max

(

l(k, θL , αL , βL , θR, αR, βR)

)

= l(k, θ̂L , α̂L , β̂L , θ̂R, α̂R, β̂R) .

Step 2: The deviance is given by,

D(k, x) = 2{�prof (k̂) − �prof (k)} , (16)

where x = (x1, x2, · · · , xn) and x1, x2, · · · , xk is a sample coming from the
distribution W (θL , αL , βL) and xk+1, · · · , xn coming from W (θR, αR, βR). In
particular, �prof (k̂) = max1≤k<n(�prof (k)) and k̂ is obtained by using (7) which
is different from Cunen et al. (2018).
Step 3: To construct a confidence curve for k based on the deviance function, we
consider the estimated distribution of D(k, x) at position k as follows.

Ψk(x) = Pk,Θ̂L ,Θ̂R
{D(k, x) < x} , (17)

where x ∈ R. In the case of continuous parameters, Wilks theorem states that
Ψk(x) is approximately the distribution function of a χ2

1 . However, Wilks theorem
does not hold for a discrete parameter k. Therefore, we compute Ψk through the
simulations. The confidence curve can be constructed as,

cc(k, xobs) = Ψk(D(k, xobs)) = Pk,Θ̂L ,Θ̂R
{D(k, x) < D(k, xobs)} . (18)

The probability that cc(k, xobs) < α, under the true value of k, is often approxi-
mated well with α. Then, the confidence sets for k can be visualized using the plot
cc(k, xobs). The cc(k, xobs) is the acceptance probability for k, or one minus the
p-value for testing that value of k by using the deviance-based test which rejects the
null hypothesis for high values of D(k, x). We compute Ψk and hence cc(k, xobs)
by simulations as follows.

cc(k, xobs) = 1

B

B∑

j=1

I
{
D

(
k, x∗

j

)
< D(k, xobs)

}
, (19)

for large number of B of simulated copies of data set x∗. For each possible value
of k, we simulate data x∗

j , j = 1, · · · , B from f (x,ΘL) and f (x,ΘR) to the
left and right side of k respectively. See Cunen et al. (2018) for more details. Our
proposed procedure uses MIC defined in (6) to construct the confidence curves.
This is different fromCunen et al. (2018) approach where they estimate the change
point location k by maximizing the profile-likelihood function over all possible
values of k, however, we estimate k using (7) by considering the impact of the
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locations of changes. The MIC-based statistics Sn in (8) can be used to confirm a
significant change statistically to avoid the fluctuations caused by noise.

5 Simulation study

In this section, we conduct simulations at various values of the change point location
k with different sample sizes n = {50, 100, 150}. The pre-change distribution is
set to be W (1, 1, 2) and the post-change distribution after the change are set to be
W (1.25, 1.25, 2.25), W (1.5, 1.5, 2.5), and W (1.75, 1.75, 2.75) respectively. Since
Sn defined in (8) and Tn defined in (10) have different probabilities of Type I error,
therefore, we cannot simply compare the power of Sn and Tn directly. Thus, to make
fair comparisons, we consider the powers of T ∗

n which is the statistic Tn after the
probability of Type I error of being adjusted to be equal to the corresponding Sn by
increasing (decreasing) its critical values.

First, we verify the null asymptotic distribution of Sn stated in Theorem 1
numerically. For different sample sizes n = {100, 200, 400}we sketch theχ2

3 quantile-
quantile(Q-Q) plot for Sn values in Figs. 1, 2 and 3. From the plots, we observe that
the null asymptotic distribution of Sn can be approximated to χ2

3 reasonably when the
sample size increases. This confirms the result given in Theorem 1.

Second, we investigate the convergence of the change point estimator k̂ in terms of
the empirical probability distribution of |k̂−k| ≤ δ at various sample sizes anddifferent
values of the parameters, where k is the true value of change location and δ is set to be
the difference between the estimated and the true value of k. The pre-change distribu-
tion is set to beW (1, 1, 2) and the post-change distribution after the change are set to be
W (1.25, 1.25, 2.25), W (1.5, 1.5, 2.5), W (1.75, 1.75, 2.75), and W (2.75, 2.75, 3.75)
respectively.We consider various values for δ, including δ = {1, 2, 3, 4, 5}. The results
are summarized in Tables 1, 2, and 3. The results indicate the convergence rate closer
to 1 with the large values of δ and the differences in parameters. We also observe that
the proposed method can provide better convergence rates with relatively large sample
sizes such as n = 100 and n = 150 comparing to relatively small sample size such
as n = 50.

The power comparisons between Sn and T ∗
n with different values of parameters,

samples sizes and change locations are reported in Tables 4, 5 and 6. The true
change point k considering {10, 15, 25}, {20, 40, 50}, {25, 50, 75} for sample size
50, 100, 150 respectively. Because of the symmetric property of the performance,
in our simulation, we only consider the true change-point locations below or equal to
the midpoint of the data set. From the tables, it can be clearly seen, in both procedures,
the power increases as the difference between the parameters increases. Further, the
power tends to increase when sample size increases. Unlike T ∗

n , the Sn method con-
siders the impact of the change point location. Consequently, the power based on the
Sn method is higher than the T ∗

n method when the change occurs near the beginning
or the end of the data. For example, with the sample size 50 and the post-change
distribution W (1.25, 1.25, 2.25), at the change locations k = 10 and k = 15, the
powers of T ∗

n are 0.452 and 0.499 respectively, which are lower than 0.490 and 0.542
of Sn . The results of these two methods are graphed in Fig. 4.
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Fig. 1 The Chi-square Q-Q plot of Sn for n = 100

Fig. 2 The Chi-square Q-Q plot of Sn for n = 200

We also conduct simulations to compare the performance of the proposed method
based on MIC in Sect. 3 and the one proposed by Cunen et al. (2018) in terms of
the coverage probabilities and average sizes of confidence sets of change points at
various scenarios. A confidence set of a change point can be defined as {k : cc(k, x) ≤
α}. The size of a confidence set is determined by the number of k belonging to the
confidence set with a given nominal level. For sample size n = 50 and 100, we
generate the data set with the true change point locations k = {10, 15, 25} and k =
{20, 40, 50} respectively. The results are summarized in Tables 7, 8, 9 and 10. The
MIC-based method provides better coverage probabilities when the change point is
located near the beginning or the end of the data set. Not surprisingly, both methods
provide approximately same coverage probabilities when the change occurs in the
middle. Further, when the change point location k is near the beginning or the end
of the data, MIC-based approach provides thinner confidence sets compare to the
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Fig. 3 The Chi-square Q-Q plot of Sn for n = 400

Table 1 Probability distribution of |k̂ − k| ≤ δ and the sample size is n = 50 at various change point
locations k

k \ δ → P(|k̂ − k| ≤ δ)

1 2 3 4 5

W(1.25, 1.25, 2.25) 10 0.156 0.246 0.308 0.573 0.634

15 0.150 0.233 0.302 0.568 0.668

25 0.167 0.242 0.307 0.558 0.610

W(1.5, 1.5, 2.5) 10 0.365 0.508 0.594 0.766 0.810

15 0.341 0.488 0.586 0.749 0.896

25 0.350 0.500 0.578 0.737 0.885

W(1.75, 1.75, 2.75) 10 0.485 0.642 0.731 0.883 0.929

15 0.552 0.708 0.788 0.837 0.967

25 0.532 0.692 0.759 0.805 0.936

W(2.75, 2.75, 3.75) 10 0.905 0.931 0.939 0.945 0.977

15 0.904 0.930 0.939 0.941 0.968

25 0.861 0.881 0.885 0.896 0.951

traditional log-likelihood based approach used by Cunen et al. (2018). Similarly, if
the change occurs in the center, the average sizes of the confidence sets are roughly
equal for both methods.

6 Application

In this section, we use the annual maximum rainfall data at one rain gauge in Fort
Collins, Colorado from 1900 through 1999. The data is available under extRemes
package in R software, see Gilleland and Katz (2016). The data consist of 100 obser-
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Table 2 Probability distribution of |k̂ − k| ≤ δ and the sample size is n = 100 at various change point
locations k

k \ δ → P(|k̂ − k| ≤ δ)

1 2 3 4 5

W(1.25, 1.25, 2.25) 20 0.222 0.342 0.417 0.771 0.828

40 0.268 0.385 0.464 0.720 0.870

50 0.269 0.352 0.436 0.787 0.830

W(1.5, 1.5, 2.5) 20 0.508 0.620 0.702 0.863 0.994

40 0.487 0.625 0.712 0.863 0.992

50 0.537 0.649 0.709 0.855 0.982

W(1.75, 1.75, 2.75) 20 0.673 0.786 0.845 0.975 0.995

40 0.673 0.786 0.828 0.948 0.964

50 0.659 0.765 0.799 0.932 0.941

W(2.75, 2.75, 3.75) 20 0.868 0.939 0.954 0.984 0.999

40 0.857 0.924 0.947 0.961 0.972

50 0.842 0.904 0.918 0.949 0.956

Table 3 Probability distribution of |k̂ − k| ≤ δ and the sample size is n = 150 at various change point
locations k

k \ δ → P(|k̂ − k| ≤ δ)

1 2 3 4 5

W(1.25, 1.25, 2.25) 25 0.315 0.431 0.512 0.767 0.813

50 0.273 0.380 0.467 0.738 0.887

75 0.276 0.388 0.470 0.728 0.861

W(1.5, 1.5, 2.5) 25 0.529 0.691 0.768 0.815 0.958

50 0.547 0.659 0.735 0.881 0.912

75 0.503 0.629 0.694 0.834 0.957

W(1.75, 1.75, 2.75) 25 0.680 0.802 0.849 0.874 0.987

50 0.665 0.748 0.792 0.815 0.921

75 0.603 0.697 0.734 0.852 0.965

W(2.75, 2.75, 3.75) 25 0.927 0.958 0.975 0.987 0.998

50 0.913 0.945 0.972 0.988 0.994

75 0.905 0.922 0.957 0.962 0.978

vations. The graph of the data is sketched in Fig. 5. Figure 6 shows the autocorrelation
function (ACF) of the data.

To ensure the independence of the data, we use the Portmanteau test statistic to
check the independence and normality of the dataset which is given as below.

Qk = n
k∑

i=1

r2i ,
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Table 4 Power comparison of T ∗
n and Sn , n = 50 and k = 10, 15, 25

k W(1.25, 1.25, 2.25) W(1.5, 1.5, 2.5) W(1.75, 1.75, 2.75)

T ∗
n 10 0.452 0.531 0.691

15 0.499 0.686 0.801

25 0.462 0.748 0.907

Sn 10 0.490 0.568 0.716

15 0.542 0.724 0.821

25 0.523 0.786 0.927

Table 5 Power comparison of T ∗
n and Sn , n = 100 and k = 20, 40, 50

k W(1.25, 1.25, 2.25) W(1.5, 1.5, 2.5) W(1.75, 1.75, 2.75)

T ∗
n 20 0.657 0.736 0.964

40 0.752 0.927 0.998

50 0.714 0.932 0.999

Sn 20 0.710 0.768 0.970

40 0.806 0.939 0.998

50 0.767 0.953 0.999

Table 6 Power comparison of T ∗
n and Sn , n = 150 and k = 25, 50, 75

k W(1.25, 1.25, 2.25) W(1.5, 1.5, 2.5) W(1.75, 1.75, 2.75)

T ∗
n 25 0.765 0.796 0.992

50 0.895 0.970 1.000

75 0.878 0.990 1.000

Sn 25 0.811 0.829 0.994

50 0.916 0.979 1.000

75 0.902 0.991 1.000

where ri are the autocorrelation coefficient at lag i , and k is the lag up to which the
autocorrlation coefficient function of the data. Under the null hypothesis Qk ∼ χ2

k .

Using the Portmanteau test, we get Q20 = 100
∑20

i=1 r
2
i = 16.025735 < χ2

0.95(20) =
31.41043. Thus, we fail to reject the null hypothesis which leads to the independence
of the data. Since MIC(n) = MIC(100) = 1156.3874 > min1≤k<n M IC(k) =
MIC(2) = 1143.4111, the estimated change location is k̂ = 2. The corresponding
test statistic Sn = 27.6097 with the critical value χ2

0.05(3) = 7.815 and the p-value
4.3858 × 10−6. It confirms the change in the data. With the conventional SIC, we
have min1≤k<n S IC(k) = SIC(2). Therefore, two methods provide the same conclu-
sion. For potential multiple changes in the data, the binary segmentation method by
Vostrikova (1981) is applied. Such a method decomposes the detecting procedure into
several steps by assuming at most one change at each step. This process is repeated
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Fig. 4 Power comparison of T ∗
n and Sn with various change point locations and different sample sizes

n = 50, 100, 150

Table 7 Comparison of the coverage probabilities, k = 10, 15, 25 and n = 50

α k = 10 k = 15 k = 25

MIC loglik MIC loglik MIC loglik

W(1.25, 1.25, 2.25) 0.50 0.61 0.61 0.68 0.67 0.66 0.67

0.90 0.80 0.78 0.82 0.80 0.81 0.80

0.95 0.83 0.81 0.86 0.84 0.85 0.84

0.99 0.89 0.87 0.90 0.88 0.91 0.90

W(1.5, 1.5, 2.5) 0.50 0.69 0.68 0.73 0.72 0.72 0.72

0.90 0.83 0.82 0.85 0.84 0.88 0.88

0.95 0.88 0.87 0.89 0.88 0.91 0.91

0.99 0.92 0.91 0.94 0.93 0.96 0.95

W(1.75, 1.75, 2.75) 0.50 0.70 0.70 0.72 0.72 0.75 0.76

0.90 0.82 0.82 0.86 0.86 0.88 0.89

0.95 0.87 0.87 0.90 0.90 0.91 0.92

0.99 0.92 0.92 0.96 0.95 0.96 0.96
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Table 8 The comparisons of the average sizes of the confidence sets, k = 10, 15, 25 and n = 50

α k = 10 k = 15 k = 25

MIC loglik MIC loglik MIC loglik

W(1.25, 1.25, 2.25) 0.50 17.39 17.66 18.13 18.48 18.41 18.96

0.90 25.26 25.28 25.57 25.75 25.86 26.22

0.95 28.25 28.18 28.36 28.40 28.67 28.93

0.99 33.51 33.26 33.84 33.64 34.22 34.11

W(1.5, 1.5, 2.5) 0.50 13.37 13.96 13.35 13.94 13.69 14.02

0.90 18.51 19.03 18.36 19.01 18.72 18.99

0.95 20.82 21.33 20.57 21.22 21.03 21.25

0.99 26.12 26.48 25.79 26.36 26.21 26.30

W(1.75, 1.75, 2.75) 0.50 10.53 10.75 10.26 10.47 10.48 10.66

0.90 14.18 14.42 13.41 13.63 13.83 14.00

0.95 15.92 16.19 14.92 15.15 15.38 15.54

0.99 20.35 20.61 18.87 19.08 19.21 19.30

Table 9 Comparison of the coverage probabilities, k = 20, 40, 50 and n = 100

α k = 20 k = 40 k = 50

MIC loglik MIC loglik MIC loglik

W(1.25, 1.25, 2.25) 0.50 0.73 0.72 0.76 0.75 0.75 0.76

0.90 0.88 0.87 0.89 0.88 0.90 0.90

0.95 0.91 0.90 0.93 0.92 0.93 0.90

0.99 0.96 0.94 0.97 0.96 0.96 0.96

W(1.5, 1.5, 2.5) 0.50 0.75 0.73 0.76 0.74 0.78 0.78

0.90 0.90 0.89 0.91 0.90 0.91 0.91

0.95 0.94 0.93 0.95 0.95 0.95 0.94

0.99 0.97 0.96 0.98 0.98 0.98 0.98

W(1.75, 1.75, 2.75) 0.50 0.79 0.78 0.80 0.80 0.78 0.78

0.90 0.91 0.91 0.90 0.90 0.90 0.90

0.95 0.94 0.94 0.93 0.93 0.95 0.95

0.99 0.97 0.97 0.97 0.97 0.98 0.98

until no more change point is detected. With the binary segmentation method, the
multiple change locations in the data are {2, 6, 17, 39, 94}. The confidence sets for
the change point estimates k̂ = 2, 6, 17, 39, 94 are {2}, {5, 6, 7, 8}, {17, 18, 39, 40},
{34, 35, 37, 38, 39, 47, 50}, {3, 4, 44, 47, 71, 72, 73, 74, 75, 94, 95} respectively. Fig-
ures 7, 8 and 9 show the confidence curves for estimated change locations. The 95%
confidence set is marked by the horizontal red dashed line. Figure 10 shows all the
estimated changes in the data set.

123



Environmental and Ecological Statistics

Table 10 Comparison of the mean sizes of the confidence sets, k = 20, 40, 50 and n = 100

α k = 20 k = 40 k = 50

MIC loglik MIC loglik MIC loglik

W(1.25, 1.25, 2.25) 0.50 27.64 30.09 26.84 29.05 27.08 28.61

0.90 38.45 40.78 36.57 38.85 37.34 38.92

0.95 43.09 45.24 41.01 43.22 41.71 43.27

0.99 54.08 55.74 50.91 52.79 51.89 53.26

W(1.5, 1.5, 2.5) 0.50 18.66 19.33 17.61 18.03 18.08 18.19

0.90 24.34 25.10 22.24 22.68 23.03 23.10

0.95 26.95 27.73 24.42 24.85 25.20 25.25

0.99 33.27 34.06 29.71 30.15 30.71 30.69

W(1.75, 1.75, 2.75) 0.50 12.56 12.66 13.38 13.47 14.27 14.26

0.90 15.84 15.97 16.03 16.15 16.98 16.98

0.95 17.43 17.57 17.28 17.40 18.26 18.26

0.99 21.32 21.48 20.50 20.63 21.34 21.33

Fig. 5 The annual maximum rainfall data at one rain gauge in Fort Collins, Colorado

Fig. 6 The auto-correlation plot
for annual maximum rainfall
data at one rain gauge in Fort
Collins, Colorado
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Fig. 7 Left: Confidence curve for change point at k̂ = 2, Right: Confidence curve for the second subset
above (2 < k ≤ 100), k̂ = 94

Fig. 8 Left: Confidence curve for the third subset below (2 < k ≤ 94), the k̂ = 6, Right: Confidence curve
for the fourth subset (7 ≤ k ≤ 94), k̂ = 17

7 Conclusion

In this paper, we propose a change point detection method for a three-parameter
Weibull distribution simultaneous based on the modified information criterion (MIC).
The simultaneous changes in the parameters are considered. The asymptotic properties
for the associated test statistic have been established.Moreover, we propose amodified
approach to construct the confidence sets for change locations at a given significance
level through confidence distributions. In terms of powers, coverage probabilities and
average sizes of confidence sets at various scenarios, simulations are conducted to
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Fig. 9 Confidence curve for the fifth subset (17 < k ≤ 94), k̂ = 39

Fig. 10 The annual maximum rainfall data at one rain gauge in Fort Collins, Colorado with change point
locations

compare the proposed method with the one based on the conventional Schwarz infor-
mation criterion (SIC) and the method provided in Cunen et al. (2018). Simulations
indicate that our method is competitive to other existing methods and even better when
the change happens near the beginning or the end of the data. Along with the binary
segmentation method, the proposedmethod is applied to detect multiple change points
and construct corresponding confidence sets for the annual maximum rainfall data.

Acknowledgements The authors would like to thank three anonymous reviewers and the Associate Editor
for their constructive comments and suggestions, which helped to improve this manuscript significantly.

References

Alghamdi A, Ning W, Gupta AK (2018) An information approach for the change point problem of the
rayleigh lomax distribution. Int J Intell Technol Appl Stat 11(4):233–254

123



Environmental and Ecological Statistics

Arellano-Valle RB, Castro L, Loschi RH (2013) Change point detection in the skew-normal model param-
eters. Commun Stat Theory Methods 42:603–618

Chen J, Gupta AK (1995) Likelihood procedure for testing change points hypothesis for multivariate
gaussian model. Random Oper Stoch Equ 3:235–244

Chen J, Gupta AK (1997) Testing and locating variance change points with application to stock prices. J
Am Stat Assoc 92:739–747

Chen J,GuptaAK(2012)Parametric statistical changepoint analysiswith applications to genetics,medicine,
and finance, 2nd edn. Birkhauser, Boston

Chen J, Gupta AK, Pan J (2006) Information criterion and change point problem for regular models. Indian
J Stat 68(2):252–282
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