
Vol.:(0123456789)

Journal of Statistical Theory and Practice           (2021) 15:36 
https://doi.org/10.1007/s42519-021-00176-1

1 3

ORIGINAL ARTICLE

Some New Bounds for Moment Generating Functions 
of Various Life Distributions Using Mean Residual Life 
Functions

Steven G. From1 · Suthakaran Ratnasingam2 

Accepted: 2 February 2021 
© Grace Scientific Publishing 2021

Abstract
In this paper, we present bounds for moment generating functions of certain life dis-
tributions, including the decreasing mean residual life class. We also give bounds for 
some other much larger classes of life distributions. Most bounds are based on the 
mean residual life functions. These bounds are compared to some other bounds in 
the literature. The methods used can also find bounds for other functions of the life-
time random variable. Some applications to bounding tail probabilities of lifetime 
distributions are given.

1 Introduction

Let X denote a non-negative (lifetime) random variable having continuous distribu-
tion function (d.f.) F(x) = P(X ≤ x) and survivor function F̄(x) = 1 − F(x), x ≥ 0 . 
Many notions of aging have been studied in the reliability literature. The interested 
reader may refer to Jeong [11] for further information. For this paper, the three 
most relevant are the increasing failure rate (IFR), the decreasing mean residual life 
(DMRL), and the new better than used in expectation (NBUE) classes of lifetime 
distributions.
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Definition 1.1 

a. A lifetime distribution F is IFR if for all x ≥ 0 , F̄(x + t)

F̄(t)
 is decreasing in t ≥ 0 . If 

f = F
� is the probability density function of X, this is equivalent to h(t) =

f (t)

F̄(t)
 

being a non-decreasing function of t ≥ 0.
b. A lifetime distribution F is DMRL if 

 is decreasing in t ≥ 0.
c. A lifetime distribution F is NBUE if 

 where 𝜇 = E(X) = ∫ ∞

0
F̄(x) dx.

It is known that the IFR class is contained in the DMRL class, which, in turn, is 
contained in the NBUE class. See Barlow and Proschan [3], for example. In particu-
lar, we shall be concerned with obtaining bounds for the moment generating func-
tion (mgf) of X given by

We shall be mainly focused on values of t ≥ 0 , although we do obtain some bounds 
for t < 0 also. The reason for this is the famous Chernoff’s inequality which is given 
below.

Definition 1.2 (Chernoff’s Inequality) Let X be random variable and let a be a real 
number. Then, we have,

Chernoff’s inequality gives an upper bound on the tail probability given in (4) 
and is generally good as a ⟶ ∞ . Clearly, replacing MX(t) by an upper bound in (4) 
still provides an upper bound on P(X ≥ a) . Hence, the bounds derived in this paper 
for t ≥ 0 will be useful for obtaining bounds on P(X ≥ a) , especially for large values 
of a. Bound (4) is an example of a large deviation type of bound, and there is an 
extensive literature available on this topic. See, for example, Petrov [12].

In this paper, we shall use various methods to obtain upper (and a few lower) 
bounds on MX(t) , particularly for the DMRL class of life distributions. Then, we 
shall obtain some bounds for some other classes of life distributions, some of which 

(1)g(t) = E(X − t|X ≥ t) =
∫ ∞

t
F̄(w) dw

F̄(t)

(2)�
∞

0

F̄(t + x) dt ≤ 𝜇F̄(x) for all x ≥ 0,

(3)�(t) = MX(t) = E(etX) = ∫
∞

0

etX dF(x).

(4)P(X ≥ a) ≤ inf
t≥0

[
MX(t)e

−at

]
.
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properly contain the DMRL class. The mean residual life function given by (1) will 
play a prominent role in the construction of most of the bounds presented. We shall 
then compare the new bounds to some other bounds that have been given in the 
literature. Previously, no bounds on MX(t) have been proposed specifically for the 
DMRL class. However, Ahmad and Mugdadi [1] have proposed bounds for the big-
ger NBUE class and other classes even larger than the NBUE class. Our bounds are 
neither more or less general than the bounds of Ahmad and Mugdadi [1], since we 
shall also consider life distribution classes that are not NBUE and not of any class 
considered by these authors. Our method will extend to bounding expected values of 
other functions of X besides the exponential function corresponding to the mgf. We 
shall also consider an application of our results to Chernoff’s theorem for sums of 
DMRL random variables.

2  Preliminary Results

To derive all new bounds, we shall need some preliminary results. These are given 
next below. Lemma 2.1 can be obtained immediately from Theorem 1.4 in Farissi 
et al. [7].

Lemma 2.1 Let w(x) be a real-valued function defined on an interval I of real 
numbers. Suppose w(x) is twice differentiable on I0 , the interior of I. Suppose 
m = infx∈I0 w

��(x) and M = supx∈I0 w
��(x) both exist. Let X be a random variable with 

mean � and variance 𝜎2 < ∞ . Then,

Lemma 2.2 is given in [14, p. 92]. We shall only need the case where the random 
variable X is contained in some interval I of real numbers.

Lemma 2.2 Let X have distribution function F. Let w1(x) and w2(x) be monotonic 
functions of x defined on an interval [a, b], where −∞ ≤ a < b ≤ ∞ . 

a. If w1(x) and w2(x) are either both non-decreasing or both non-increasing, then 
E[w1(X)w2(X)] ≥ E[w1(X)]E[w2(X)] , that is, 

 provided all three integrals in (6) exist.
b. If w1(x) is non-decreasing and w2(x) is non-increasing, then the inequality signs 

are reversed above.

(5)w(�) +
1

2
m�2 ≤ E

[
w(X)

] ≤ w(�) +
1

2
M�2.

(6)�
b

a

w1(x)w2(x) dF(x) ≥ �
b

a

w1(x) dF(x)�
b

a

w2(x) dF(x),
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Note that Lemma  2.2 is a covariance result, since in part (a), 
Cov[w1(X),w2(X)] ≥ 0 , for example. Lemma  2.3 gives some moment inequality 
relations that will be needed later. See Barlow et al. [2], p. 394 or Fagiuoli and 
Pellerey [6].

Lemma 2.3 Suppose X has a DMRL distribution. Let n and m be non-negative inte-
gers with 1 ≤ n ≤ m . Then, we have

In particular, when n = 1,

When n = 1 and m = 2 , E(X2) ≤ 2�2 , which gives,

Lemma 2.4 gives an infinite series representation for E[w(X)] in terms of the 
mean residual life function g(x). See from [9], pp. 25–26.

Lemma 2.4 Let X be a continuous lifetime random variable with support [a,  b) 
where 0 ≤ a < b ≤ ∞ . Let w(x) be a function which is real analytic on some open 
interval containing [a, b). Let � = E(X) . Then,

where w(j)(x) is the jth derivative of w, j = 2, 3,… and the function g(x) is defined in 
Section 1 in equation (1) for the DMRL class.

In particular, if w(x) = x2 , then the variance of X is

Next, we present the two most relevant bounds from the many bounds on MX(t) 
given in Ahmad and Mugdadi [1].

Theorem 2.1 (Theorem 2.1 of Ahmad and Mugdadi [1]) Suppose X has an NBUE 
lifetime distribution with 𝜇 = E(X) < ∞ . Then,

(7)
[
E(Xn)

n!

]1∕n
≥
[
E(Xm)

m!

]1∕m
.

(8)E(Xm) ≤ m!�m.

(9)�2 ≤ �2.

(10)E[w(X)] = w(�) +

∞∑

j=2

(
j − 1

j!

)

∫
∞

0

w(j)(x)(g(x))j dF(x),

(11)�2 = Var(X) = E(X2) − �2 = ∫
∞

0

(g(x))2 dF(x).

(12)
MX(t) =E(e

tX) ≤ 1

1 − 𝜇t
, 0 ≤ t <

1

𝜇
,

≡MA1
(t).
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Theorem 2.2 (Theorem 2.2 of Ahmad and Mugdadi [1]) Suppose X has a new better 
than renewal used in expectation (NBRUE) lifetime distribution, that is,

Suppose E(X2) = 𝜇(2) < ∞ . Then,

In particular, (13) holds for the NBUE and DMRL classes which are contained in 
the NBRUE class. By Eq. (12), we see that MA2

(t) ≤ MA1
(t) , for 0 ≤ t <

1

𝜇
.

Remark 1 No bound on MX(t) has been previously proposed which uses knowledge 
of both � and �2 = �(2) − �2 specifically for the DMRL class. But Theorem 2.2 is 
one of the few bounds in the literature utilizing both � and �2 . Also, MA2

(t) is not an 
upper bound for MX(t) if t < 0 . It is a lower bound instead. We shall compare MA1

(t) 
and MA2

(t) to the new upper bound M1(t) given in Sect. 3, in the DMRL case.

Of course, the MA1
(t) and MA2

(t) bounds are for a more general class of life dis-
tributions. But many commonly used lifetime distributions, such as the Weibull and 
Gamma distributions, are members of the DMRL, NBUE, and NBRUE classes. 
Bounds based on the mean � alone are not enough to discriminate between these 
classes since the MA1

(t) bound is sharp for all of these classes, if only the mean � 
is to be used. This is because the exponential distribution is a common boundary 
distribution that is a member of all these classes. However, if 𝜎2 < 𝜇2 holds (true for 
all non-exponential DMRL lifetime distributions), then the exponential distribution 
is ‘thrown’ out and we can obtain smaller bounds on MX(t) . Moreover, the methods 
used to obtain bounds in the DMRL case will sometimes work for larger classes of 
distributions which are not of the NBUE or NBRUE classes, as we shall see later in 
Sect. 3.

We shall present some examples of this when we are done with presenting results 
for the DMRL class in Sect. 3. Our results are meant to complement those of Ahmad 
and Mugdadi [1], and numerical comparisons are done just to get an idea of how 
much improvement in bounds is possible if we assume the more restrictive DMRL 
class as opposed to the NBUE and NBRUE classes. It should be mentioned that 
bounds for the mgf MX(t) have been given for distributions of bounded support in 
Brook [4], but we are often interested in distributions with infinite support in reli-
ability theory.

�
∞

x

(

�
∞

u

F̄(w) dw

)
du ≤ 𝜇 �

∞

x

F̄(u) du.

(13)
MX(t) ≤2 + 𝜇(2)t

2 − 2𝜇2t2

2(1 − 𝜇t)
, 0 ≤ t <

1

𝜇
.

≡MA2
(t).
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3  Main Results

In this section, we present new bounds for the mgf MX(t) for various classes of life 
distributions. First, we consider bounds for the DMRL class. The first few bounds uti-
lize both the mean � and the variance �2 of X and provide the best bounds given in this 
paper. Theorem 3.1 gives a third upper bound on MX(t) utilizing both the mean � and 
variance �2 of X.

Theorem 3.1 Let X have a DMRL lifetime distribution with mean � and variance �2 . 

Let t1 be the unique positive real number such that 
(
�

�

)2[
1 + (�t1 − 1)e�t1

]
= 1 . 

Then, for 0 ≤ t < t1,

Proof We shall apply Lemma 2.4 with w(x) = etx, t ≥ 0 . Then,

Since X is DMRL, g(x) ≤ g(0) = �, x ≥ 0 . So

Apply Lemma 2.2 with w1(x) = etx,w2(x) = (g(x))2 . Since w1 is non-decreasing and 
w2 is non-increasing in x,

From (15) and (16), we obtain, using simple Maclaurin series expansions,

(14)

MX(t) ≤ e�t

1 −

(
�

�

)2(
(�t − 1)e�t + 1

)

≡M1(t).

MX(t) − et� =

∞∑

j=2

(
j − 1

j!

)

∫
∞

0

w(j)(x)(g(x))j dF(x)

=

∞∑

j=2

(
j − 1

j!

)

∫
∞

0

tjetx(g(x))j−2(g(x))2 dF(x).

(15)MX(t) − et� ≤
∞∑

j=2

(
j − 1

j!

)
tj�j−2 �

∞

0

etx(g(x))2 dF(x).

(16)�
∞

0

etx(g(x))2 dF(x) ≤�
∞

0

etx dF(x)�
∞

0

(g(x))2 dF(x)

=MX(t)�
2.

(17)

MX(t) − et� ≤
( ∞∑

j=2

(
j − 1

j!

)
(�t)j

)
MX(t)

(
�

�

)2

=

(
1 + (�t − 1)et�

)
MX(t)

(
�

�

)2

.
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Solving for MX(t) in (17), we obtain

for all t with 0 ≤ t < t1 . This completes the proof of Theorem 3.1.   ◻

Remark 2 The value of t1 in Theorem 3.1 exceeds 1
�

 as we now demonstrate, unless 

� = � (the exponential distribution case). Let R(x) = (x − 1)ex + 1 , where x = �t . It 

suffices to show R(x) ≤ 1, x ≤ 0 ≤ 1 , since 
(
�

�

)2

≤ 1 with 
(
𝜎

𝜇

)2

< 1 , unless X is 

DMRL exponential. Now R(0) = 0 ≤ 1 and R(1) = 1 ≤ 1 . We obtain 
R�(x) = xex > 0 . So R(x) is increasing in x, 0 ≤ x ≤ 1 . Thus, R(x) ≤ 1 and (
𝜎

𝜇

)2(
(𝜇t − 1)et𝜇 + 1

)
< 1 , unless � = � in the exponential distribution case. In 

addition, if 𝜎 < 𝜇 , then

Thus, M1(t) is a smaller bound than MA1
(t) , unless � = � in the exponential case.

Theorem 3.1 offers a new bound on the mgf of X when X has a DMRL lifetime 
distribution with known mean � and variance �2 . How does it compare to the Ahmad 
and Mugdadi [1] bound MA2

(t) which also uses the mean and variance? Of course, 
the upper bound MA2

(t) is for a more general class of distributions, so comparisons 
given below may be a bit delicate. However, a comparison of these bounds would 
give one an idea of the relative merit of the new bound.

(18)

MX(t) ≤ et�

1 −

(
�

�

)2(
(�t − 1)et� + 1

)

≡M1(t).

M1(t) =
et𝜇

1 −

(
𝜎

𝜇

)2(
(𝜇t − 1)et𝜇 + 1

)

≤ et𝜇

1 −

(
(𝜇t − 1)et𝜇 + 1

) =
1

1 − 𝜇t
, 0 ≤ t <

1

𝜇
.

Table 1  Comparison of upper 
bounds for M

X
(t) for Weibull 

distribution

� t M
X
(t) M

A
1
(t) M

A
2
(t) M

1
(t) t

0
t
1

1.1 0.35 1.485 1.510 1.495 1.490 1.036 1.11
1.5 0.35 1.406 1.462 1.423 1.412 1.108 1.456
2.0 0.35 1.382 1.450 1.399 1.386 1.128 1.759
3.0 0.45 1.511 1.672 1.555 1.516 1.120 2.175
5.0 0.40 1.449 1.580 1.479 1.450 1.089 2.715
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We compare various upper bounds on MX(t) for the Weibull and Gamma distribu-
tions with probability density functions given below. Table 1 presents various upper 
bounds for MX(t) as well as the value of t1 defining the interval of existence (of upper 
bound). The quantity t0 is the quantity 1

�
 giving the interval of existence of MA1

(t) 

and MA2
(t) . 

1. Weibull distribution. X has probability density function 

X has a DMRL distribution iff � ≥ 1.
2. Gamma distribution. X has probability density function 

X has a DMRL distribution iff � ≥ 1.

Tables  1 and 2 provide a comparison of upper bounds for MX(t) . For both 
the Weibull and Gamma distributions, we considered the set of � values: 
� ∈ {1.1, 1.5, 2.0, 3.0, 5.0} . It can be clearly seen that M1(t) is the best upper bound.

Next, we present bounds for MX(t) for some lifetime distribution classes that are 
not DMRL. In some cases, we can obtain bounds for the IMRL class (increasing 
mean residual life class). Generally, the bounds of Theorem  3.2 assumes g(x) is 
bounded on [0,∞) , but makes no assumptions on monotonicity of g(x). Thus, The-
orem  3.2 is still applicable to the DMRL class, since 0 ≤ g(x) ≤ g(0) = � for the 
DMRL class. However, the bounds given below in Theorem  3.2 produce inferior 
bounds when compared to the more specific bounds of Theorem 3.1.

Theorem 3.2 Suppose X has a lifetime distribution with bounded mean residual life 
function. Suppose there is a real number M such that 0 ≤ g(x) ≤ M, x ≥ 0 . Then, if 
� = E(X) , then

f (x) = 𝜃x𝜃−1e−x
𝜃

, x > 0, 𝜃 > 0

f (x) =
1

Γ(𝜃)
x𝜃−1e−x, x > 0, 𝜃 > 0

Table 2  Comparison of upper 
bounds for M

X
(t) for Gamma 

distribution

� t M
X
(t) M

A
1
(t) M

A
2
(t) M

1
(t) t

0
t
1

1.1 0.35 1.606 1.626 1.615 1.610 0.909 0.941
1.5 0.25 1.540 1.600 1.562 1.549 0.667 0.771
2.0 0.25 1.778 2.000 1.875 1.807 0.500 0.639
3.0 0.18 1.814 2.174 1.963 1.846 0.333 0.488
5.0 0.10 1.694 2.000 1.800 1.709 0.200 0.344
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where t2 =
1

M
.

Proof Proceed as in the proof of Theorem 3.1. Then, we obtain

Thus,

which gives,

Since Mt − 1 < 0 , we obtain

This completes the proof.   ◻

(19)
MX(t) ≤e−t(M−𝜇)

1 −Mt

≡M2(t), 0 ≤ t < t2,

(20)

MX(t) − et� =

∞∑

j=2

(
j − 1

j!

)

�
∞

0

tjetx(g(x))j dF(x)

≤
∞∑

j=2

(
j − 1

j!

)

�
∞

0

tjetxMj dF(x)

=

( ∞∑

j=2

(
j − 1

j!

)
(Mt)j

)
MX(t)

=

(
1 + (Mt − 1)eMt

)
MX(t).

MX(t) − et� ≤ MX(t) +

(
(Mt − 1)eMt

)
MX(t),

−et� ≤
(
(Mt − 1)eMt

)
MX(t).

(21)
MX(t) ≤ et𝜇

(1 −Mt)eMt

=
e−t(M−𝜇)

1 −Mt
, 0 ≤ t <

1

M
.

Table 3  Comparison of upper 
bounds for M

X
(t) for Weibull 

distribution

� t M
X
(t) M

2
(t) M t

2

1.1 0.35 1.485 2.257 1.965 0.509
1.5 0.35 1.406 2.110 1.903 0.525
2.0 0.35 1.382 2.073 1.886 0.530
3.0 0.45 1.511 4.304 1.893 0.528
5.0 0.40 1.449 2.880 1.918 0.521
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It is clearly evident that the bound presented in Theorem 3.2 depends on the 
value of M, which is the known upper bound of the MRL function. In the special 
case of DMRL life distributions, a valid choice of M is M = � = g(0) . Therefore, 
for any valid choice of M, in the special case of DMRL distributions, the bound 
of Theorem 3.2 is inferior to that of Theorem 3.1. However, the bound of Theo-
rem 3.2 may be useful in the DMRL case, when one knows � and M, but does not 
know �(2) or �2 . Tables 3 and 4 present Theorem 3.2 bounds for the Weibull and 
Gamma distributions. Comparing to the more specific bounds of Tables 1 and 2, 
the bound M2(t) is not as good as M1(t) as expected. However, M2(t) is more gen-
erally applicable.

Remark 3 Let m = inf{g(t) ∶ t ≥ 0} . If m > 0 , then slightly modifying the proof of 
Theorem 3.2, we can obtain the lower bound,

Example 1 Suppose X has survivor function

Then, a simple computation gives g(x) = 2x + 1

x + 1
 , with 1 ≤ g(x) ≤ 2 . Letting M = 2 

in Theorem 3.2 gives

Note that X has a bounded increasing mean residual life function (IMRL), 
and is not NBUE or NBRUE. Hence, only the bound (23) is applicable 
(Table  5). Theorem  3.3 gives a simple condition one can check to see if g(x) 

(22)MX(t) ≥ e−t(m−𝜇)

1 − mt
, 0 ≤ t <

1

m
.

F̄(x) = S(x) =
x + 1

(2x + 1)5∕4
e−x∕2, x ≥ 0.

(23)MX(t) ≤ e−t

1 − 2t
, 0 ≤ t <

1

2
.

Table 4  Comparison of upper 
bounds for M

X
(t) for Gamma 

distribution

� t M
X
(t) M

2
(t) M t

2

1.1 0.35 1.606 2.659 2.100 0.476
1.5 0.25 1.540 2.077 2.500 0.400
2.0 0.25 1.778 3.115 3.000 0.333
3.0 0.18 1.814 2.983 4.000 0.250
5.0 0.10 1.694 2.262 6.000 0.167

Table 5  Bound (23) values t 0.10 0.20 0.30 0.40 0.45

M
X
(t) 1.094 1.199 1.318 1.451 1.524

Bound (23) 1.131 1.365 1.852 3.352 6.376
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is bounded above by using the hazard (failure rate) function. In the sequel, let 
S(x) = F̄(x) = 1 − F(x), x ≥ 0.

Theorem  3.3 Suppose that the hazard function h(x) =
f (x)

S(x)
 exists and satisfies 

limx→∞ h(x) = ∞ . Suppose that f(x) is continuous on [0,∞) . Then, g(x) is bounded 
on [0,∞) , that is, there exists M > 0 such that 0 ≤ g(x) ≤ M, x ≥ 0.

Proof Since f(x) is continuous, f(0) exists and g(x) is continuous on [0,∞) . To show 
g(x) is bounded above, it now suffices to show limx→∞ g(x) = 0 , and we obtain using 
L’hospital’s rule,

This completes the proof.   ◻

Remark 4 In the proof of Theorem 3.3, we used the relationship between g(x) and 
h(x) as x → ∞ . More precise estimations of g(t) can be obtained if limx→∞ h(x) = ∞ . 
See Theorem  1 of Gupta and Bradley [10]. Also, Theorem  3.3 is also true if 
limx→∞ h(x) = L , provided L ≠ 0 (L > 0).

Next, we present bounds for MX(t) for a very general class of lifetime distribu-
tions. The bounds of Theorem  3.4 are valid, in particular, for lifetime distribu-
tions which are not NBUE (hence not DMRL), provided the mean and variance 
of X exist.

Theorem  3.4 Suppose X has a lifetime distribution with mean � and variance 
𝜎2 < ∞ . Then,

and

Proof Apply Lemma  2.1 with w(x) = etx . Then, w��(x) = t2etx . If t < 0 , 
M = supx>0 t

2etx = t2 . If t ≥ 0 , m = infx>0 t
2etx = t2 .   ◻

lim
x→∞

g(x) = lim
x→∞

∫ ∞

x
S(w) dw

S(x)

= lim
x→∞

S(x)

f (x)

=
1

limx→∞ h(x)

= 0.

(24)MX(t) ≤ et𝜇 +
1

2
t2𝜎2, t < 0,

(25)MX(t) ≥ et� +
1

2
t2�2, t ≥ 0.
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We have obtained upper bounds for MX(t) for t < 0 also, but these are not as good 
as the upper bounds of Ahmad and Mugdadi [1] for this case (when excluding their 
Theorem 2.2 and Theorem 3.2 bounds which are not valid for t < 0 ).

4  Bounds on Derivatives of mgfs

In this section, we show how bounds on derivatives of mgfs may be obtained. 
Ahmad and Mugdadi [1] obtained results on bounds for Ψ(t) = tM�

X
(t) for various 

reliability classes of life distributions. See their Theorems 3.1–3.4 for the NBU, 
NBRU, RNBU, and RNBRU classes of life distributions, respectively. (In Theo-
rems 3.2 and 3.3, t must be non-negative.)

Theorem 4.1 is just one bound of many that can be derived for M�

X
(t) using the methods 

of this paper. Bounds for higher-order derivatives MX(t) can also be obtained.

Theorem 4.1 Suppose X has a DMRL lifetime distribution with mean � and variance 
�2 . Then,

where t3 =
√

E(X2)

2
=

√
�2 + �2

2
.

Proof We have

From (7) of Lemma 2.3 with n = 2,

From (27), we obtain

  ◻

(26)M�
X
(t) ≤ 𝜇 + (𝜇2 + 𝜎2)t +

3

(
t

t3

)3

− 2

(
t

t3

)4

(
1 −

t

t3

)2
, 0 ≤ t < t3,

(27)M�
X
(t) = � + (�2 + �2)t +

∞∑

m=3

E(Xm)

m!
tm.

E(Xm) ≤ m!

2m∕2
(E[X2])m∕2, m = 3, 4,…

M�
X
(t) ≤ 𝜇 + (𝜇2 + 𝜎2)t +

∞∑

m=3

m

(
t

t3

)m

= 𝜇 + (𝜇2 + 𝜎2)t +

3

(
t

t3

)3

− 2

(
t

t3

)4

(
1 −

t

t3

)2
, 0 ≤ t < t3.
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5  Applications

As mentioned earlier, one application area is to use an upper bound on the mgf in 
Chernoff’s inequality. The best bound in the DMRL case would be M1(t) . Thus, 
for a > 0,

Cheng and He [5], it was shown that if X has a DMRL distribution with E(X2) < ∞ , 
then

The left-hand side of (29) is a measure of proximity of a DMRL distribution to an 
exponential distribution of the same mean � , and the right-hand side of (29) is a 
function of this coefficient of variation.

Numerical studies given in Table 6 verify that our upper bound (28) beats the 
upper bound of Sengupta and Das [15] for DMRL distributions given by

for large values of a and for non-exponential DMRL distributions with 
(
𝜎

𝜇

)
<< 1 . 

However, if 
(
�

�

)
≈ 1 , then the Sengupta & Das [15] upper bound (30) is better.

As another application, bounds for the mgf of k-out-of-n- system may be 
obtained from bounds on the mean residual life function of a k-out-of-n- system 
which are given in Raqab and Rychlik [13] in terms of bounds on component 
mean residual life functions.

We can also obtain bounds on tail probabilities of sums of DMRL random 
variables using just the means and variances of the random variables as done in 
From [8] for the NBUE case. In this paper, various upper bounds of Ahmad and 
Mugdadi [1] were utilized.

In real-life applications, the values of � and �2 must be estimated by a sample 
mean and variance, respectively. Then, all bounds in this paper and all bounds of 
papers cited in this work are not guaranteed to be bounds on the moment gener-
ating function or on the tail probabilities in (28) when estimates of � and �2 are 

(28)P(X ≥ a) ≤ inf
t≥0M1(t)e

−at.

(29)sup
t≥0

|F̄(t) − e−t∕𝜇| ≤ 1

2

(
1 −

(
𝜎

𝜇

)2)
.

(30)P(X ≥ a) ≤ e−(a−�)∕�, a ≥ �,

Table 6  Comparison of upper 
bounds for Weibull distribution

� �∕� a t Bound (28) Bound (30)

1.2 0.8366 2.9410 0.8606 0.2985 0.1194
2.0 0.5227 2.8860 1.3893 0.1217 0.1046
3.0 0.3634 2.8930 1.7966 0.0584 0.1065
5.0 0.2291 2.9180 2.3317 0.0215 0.1132
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used. However, this problem is mitigated in large samples by standard consist-
ency results and laws of large numbers theorems. We are currently investigating 
bounds for moments and certain functions of moments of X for the DMRL class 
and hope to report on this in the future.
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