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Abstract
In this paper, we consider a skew normal change-point model. Instead of only pro-
viding the point estimate of the change location, we propose an estimating proce-
dure based on the confidence distribution combining with the modified information 
criterion to construct the confidence set for the change location. The simulations 
indicate the advantages of the proposed method comparing to the existing method 
in terms of coverage probabilities and average lengths of the confidence sets, espe-
cially when the change occurs at the very beginning or in the very end. The pro-
posed method is applied to two stock market data to illustrate the detection and the 
estimation procedures.

Keywords Confidence distribution · Skew normal distribution · Change point 
detection · Information criterion · Coverage probability · Average lengths

1 Introduction

The concept of a confidence distribution (CD) has its roots in Fisher’s fiducial dis-
tribution. A CD is similar to a point estimator or an interval estimator, but it uses 
a sample-dependent distribution function on the parameter space to estimate the 
parameter of interest. It also can provide confidence intervals of all nominal levels 
for a parameter of interest through confidence curves. Xie and Singh [44] gave a 
detailed review of recent developments in confidence distributions. The first time 
the terminology “confidence distribution” was used in a formal publication dated 
back to [15]. In his paper, Cox suggested that a confidence distribution “can either 
be defined directly or can be introduced in terms of the set of all confidence intervals 
at different levels of probability.” The formal modern definition for CD can be found 
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in [35, 40, 41]. The concept of CD is broad, and it has wide range of applications 
including bootstrap distributions, p value functions, normalized likelihood functions 
and Bayesian posteriors, among others. For example, [35] used the CD to obtain 
the reduced likelihood function. Singh et al. [40] proposed a method for combining 
information from independent studies through confidence distributions. Singh et al. 
[41] provided a formal definition of a CD and an asymptotic confidence distribution 
(aCD). Singhand Xie [39] proposed a function called a CD posterior which uses the 
information from observed data with its corresponding prior information. Xie and 
Singh [44] proposed a CD approach which incorporates the expert opinions while 
analyzing clinical data with binary outcomes. Shen et al. [38] proposed a predictive 
distribution function with CDs. Celine et al. [8] proposed a parametric method by 
using confidence distributions for detecting change points and obtained confidence 
curves for change locations.

The detection of change points is a process which attempts to identify points in 
time when the probability distribution of a stochastic process or time series changes. 
Change-point analysis plays an important role in financial time series analysis, econ-
omy, quality control, genome research, signal processing, medical research, statisti-
cal calibration and so on. The study of the change-point problem was dated back to 
[31, 32] who first proposed a procedure to detect only one change in a parameter 
and has been extensively studied since then. For instance, [13, 17, 20, 21] studied 
the testing and estimation of a change in the mean of a normal model. Hsu [26] and 
Inclan [28] studied change-point problem for the variance in a normal model. Read-
ers are referred to [10, 11, 14] for more details of parametric and nonparametric 
methods on different types of change-point problems. The use of the information 
criteria in the view of the model selection as an alternative for change-point detec-
tion has been extensively studied such as [7, 9, 12, 19, 23, 30, 33], to name a few.

As mentioned earlier, [8] suggested a change-point detection procedure based on 
a CD incorporating the likelihood function by profiling over the other parameters 
and obtained the confidence curve for the change location, consequently the confi-
dence sets at any confidence levels. However, as [12] pointed out, the estimation of 
the change location through the regular likelihood function does not consider the 
contribution of the change location to the model complexity as a parameter. Clearly, 
when the change location k is located in the middle of the data, all the parameters 
are effective. However, the parameter space of the model becomes redundant when 
the location of change k is near 1 or n. To tackle this issue, [12] proposed the modi-
fied information criterion (MIC) by considering the complexity of the penalty term 
which could relate to the change-point locations. This method assigns larger penalty 
when the change point is near the beginning or the end of the data. In this paper, we 
propose a CD-based procedure for a skew normal change-point model incorporat-
ing modified information criterion (MIC). Furthermore, the presence of noise in the 
data can influence the intrinsic nature of data and cause changes. Therefore, we also 
verify the statistical significance of the detected change point through MIC-based 
test statistic.

This paper is organized as follows: In Sect. 2, we go over the ideas of MIC and 
construction of confidence curves through CDs briefly and then introduce the pro-
cedure based on CDs associated with MIC for a skew normal change-point model. 
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In Sect. 3, simulations are conducted to investigate the performance of the proposed 
method and compare with some other existing method in terms of coverage prob-
abilities and average lengths of confidence sets. The proposed method is applied to 
two stock market data to illustrate the detection and the estimation procedures in 
Sect. 4. Some discussion is provided in Sect. 5.

2  Methodology

2.1  Modified Information Criterion (MIC)

Let x1,… , xn be a random sample drawn from the density function  f (x;�).  The 
Schwarz information criterion (SIC) proposed by [34] is given as follows:

where ln(⋅) is the log-likelihood function of the random sample, �̂� is the maximum 
likelihood estimate (MLE) of the parameter �  and dim(�̂�k) is the dimension of the 
parameter space. We denote �L,�R to be the pre-change and post-change param-
eters, respectively, and �̂�L, �̂�R to be the MLEs of the pre-change and post-change 
parameters. In general, the change-point problem can be treated as the model selec-
tion problem by selecting a better model between the null hypothesis of no change 
and the alternative hypothesis of at least one change existing. Therefore, the SIC in 
the context of having at least one change can be written as

where 1 ≤ k < n and (1) defines the SIC under the null hypothesis of no change 
which we denote it as SIC(n). However, as Chen et al. [12] pointed out, (2) does not 
consider the change location to be a parameter which may cause the redundancy of 
the parameter space when the change occurs near the beginning or the end of data. 
Therefore, the modified information criterion (MIC) proposed by Chen et al. [12] is 
given as follows. Under the null hypothesis of no change, the MIC is defined as:

where �̂� maximizes ln(�) . Therefore, under H0 , both SIC(n) and MIC(n) are same. 
Under the alternative hypothesis, the MIC is defined as:

where 1 ≤ k < n . The difference between (2) and (4) is that (4) consid-
ers the contribution of the change location  k  to the model as a parameter. If 
MIC(n) > min1≤k<n MIC(k) , then we select the model with a change point and the 
estimate of the change point is given by

(1)SIC = −2ln(�̂�) + dim(�̂�) log(n),

(2)SIC(k) = −2ln(�̂�L(k), �̂�R(k), k) +

[

2dim(�̂�L(k)) + 1

]

log(n),

(3)MIC(n) = −2ln(�̂�) + dim(�̂�) log(n),

(4)MIC(k) = −2ln(�̂�L(k), �̂�R(k), k) +

[

2dim(�̂�L(k)) +

(

2k

n
− 1

)2]

log(n),
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Moreover, for the purpose of verifying the statistical significance of the detected 
change point, the associated MIC-based test statistic is defined as:

where MIC(n) and MIC(k) are defined in (3) and (5). Chen et al. [12] showed, under 
Wald conditions and the regularity conditions, as n ⟶ ∞,

in distribution under H0 , where d is the dimension of �.

2.2  Profile log‑likelihood and Deviance Function

Suppose observations x1,… , xk coming from the population with the density func-
tion f (x,�L) and xk+1,… , xn coming from the population with the density function 
f (x,�R) . The log-likelihood function is:

The profile log-likelihood function can be obtained by maximizing the log-likeli-
hood function (8) over �L and �R for a given k. It can be defined as:

where �̂�L and �̂�R are MLEs of �L and �R for a given k, respectively. Then, the esti-
mated change location k̂ is given by lprof (k̂) = max

k
(lprof (k)). After k̂ is obtained, the 

deviance function is given by

where x = (x1, x2,… , xn). To construct a confidence curve for k based on the devi-
ance function, we consider the estimated distribution of D(k, x) at position k as 
follows:

where x ∈ ℝ. In the case of continuous parameters, Wilks theorem states that �k(x) 
is approximately the distribution function of a �2

1
 . However, Wilks theorem does not 

hold for a discrete parameter k. Therefore, we compute �k through the simulations. 
The confidence curve can be constructed as:

(5)MIC(k̂) = min
1≤k<n

MIC(k).

(6)Sn = MIC(n) − min
1≤k<n

MIC(k) + dim(𝛩) log(n),

(7)Sn ⟶ �2
d
,

(8)l(k,�L,�R) =
∑

i≤k

log(f (x,�L)) +
∑

i≥k+1

log(f (x,�R)).

(9)lprof (k) = max
𝛩L,𝛩R

(l(k,𝛩L,𝛩R)) = l(k, �̂�L, �̂�R),

(10)D(k, x) = 2{lprof (k̂) − lprof (k)},

(11)𝛹k(x) = Pk,�̂�L,�̂�R
{D(k, x) < x},

(12)cc(k, xobs) = 𝛹k(D(k, xobs)) = Pk,�̂�L ,�̂�R
{D(k, x) < D(k, xobs)}.
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The probability that cc(k, xobs) < 𝛼 , under the true value of  k,    is often approxi-
mated well with � . Then, the confidence sets for k can be visualized using the plot 
cc(k, xobs). The cc(k, xobs) is the acceptance probability for k, or one minus the p 
value for testing that value of k by using the deviance-based test which rejects the 
null hypothesis for high values of D(k, x) . We compute �k and hence cc(k, xobs) by 
simulations as follows:

for large number of B of simulated copies of dataset x∗ . For each possible value of k, 
we simulate data x∗

j
, j = 1,… ,B from f (x,�L) and f (x,�R) to the left and right side 

of k, respectively. See [8] for more details. In our proposed procedure to construct 
the confidence curves, it is different from the [8] approach here to estimate k. Instead 
of estimating the change location k by maximizing the profile-likelihood function 
over all possible values of k, we estimate k using (5) by considering the impact of 
change locations. The MIC-based statistics Sn in (6) can be used to confirm a signifi-
cant change statistically to avoid the fluctuations caused by noise.

2.3  Changes in All Three Parameters in a Skew Normal Distribution

The skew normal distribution (SN) was introduced by [3] which allows to regulate 
skewness in the dataset. The probability distribution function of a skew normal ran-
dom variable X is given by

and the cumulative distribution function (CDF) of the SN distribution is:

where T is Owen’s function, and � and � are the probability distribution function 
and cumulative distribution function of the standard normal distribution. � ∈ ℝ is 
the location parameter, � ∈ ℝ

+ is the scale parameter and � ∈ ℝ is the shape param-
eter. We denote X ∼ SN(�, �, �). When � = 0 , the SN(�, �, �) reduces to the normal 
N(�, �). Several basic properties of the skew normal distribution were studied by 
[3]. Readers are referred to [4] for more details of skew normal distribution family 
and recent developments on this direction. The multivariate case of the skew normal 
distribution was investigated by [5]. Although many methods have been proposed 
for making statistical inference for the skew normal distribution family, only a few 
of the literature is available on the change-point detection. Arellano-Valle et al. [2] 
proposed a Bayesian approach for detecting changes in parameters in a skew normal 
model. Ngunkeng and Ning [30] proposed a skew normal change-point model based 
on the Schwarz information criterion (SIC). Their method was improved by Said 

(13)cc(k, xobs) =
1

B

B
∑

j=1

I{D(k, x∗
j
) < D(k, xobs)},

(14)fX(x) =
2

�
�

(

x − �

�

)

�

(

�
x − �

�

)

, x ∈ ℝ

(15)FX(x) = �

(

x − �

�

)

− 2T

(

x − �

�
, �

)

, x ∈ ℝ
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et al. [33] where they considered modified information criterion to detect changes in 
a skew normal model. A change-point problem for a skew normal distribution can 
be stated as follows:

where k ∈ {1,… , (n − 1)} is the unknown change-point location and needed to be 
estimated. We are testing the following hypotheses:

versus

where 1 ≤ k < n is the unknown change-point location with (�L, �L, �L) and 
(�R, �R, �R) being the parameters of left and right side of the change-point location 
k. We assume there is at most one change in data since multiple-change detection 
can always be decomposed to multistages with at most a single change at each stage 
using the binary segmentation method proposed by [43]. The log-likelihood func-
tion under the null hypothesis is defined as follows:

To obtain the MLEs of �, � and �, we take the first derivative of the log-likelihood 
function (17) with respect to the parameters �, �, � and set the equations equal to 
zero. Under the alternative hypothesis,

To obtain the MLEs of �L,�R, �R, �L, �R  and�L, we take the first derivative of the 
log-likelihood function (18) with respect to the parameters and set the equations 
equal to zero. Denote �̂�L, �̂�R, �̂�R, �̂�L, �̂�R, �̂�L to be the MLEs of the �L,�R, �R, �L, �R , 
�L , respectively. The profiled log-likelihood function can be derived from (9). The 

(16)xi ∼

{

SN(�L, �L, �L) i = 1,… , k,

SN(�R, �R, �R) i = (k + 1),… , n,

H0 ∶ �1 = �2 = ⋯ = �n = �,

�1 = �2 = ⋯ = �n = �,

�1 = �2 = ⋯ = �n = �,

H1 ∶ �1 = ⋯ = �k ≠ �k+1 = ⋯ = �n,

�1 = ⋯ = �k ≠ �k+1 = ⋯ = �n,

�1 = ⋯ = �k ≠ �k+1 = ⋯ = �n,

(17)

lH0
(�, �, �) = n log

(

2

�

)

−
1

2

n
∑

i=1

log

(

�

(

xi − �

�

)2)

+

n
∑

i=1

log

(

�

(

�
xi − �

�

))

.

(18)

lH1
(k) =

{

k log

(

2

�L

)

−
1

2

k
∑

i=1

log

(

�

(

xi − �L

�L

)2)

+

k
∑

i=1

log

(

�

(

�L
xi − �L

�L

))}

+

{

(n − k) log

(

2

�R

)

−
1

2

n
∑

i=k+1

log

(

�

(

xi − �R

�R

)2)

+

n
∑

i=k+1

log

(

�

(

�R
xi − �R

�R

))}

.
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modified information criteria can be obtained from (3). The estimate of the change 
point k̂ is the value which minimizes equation (5). Further, the deviance function 
and the confidence curve can be obtained from (10) and (11), respectively.

3  Simulation Study

In this section, simulations will be conducted to investigate the performance of the 
proposed change-point detection method based on a CD and compare with the one 
proposed by [8]. To make fair comparisons, we perform two methods under the 
same settings and study their coverage probabilities and the average sizes of the con-
fidence sets of the change points. A confidence set of a change point is defined by 
{k ∶ cc(k, x) ≤ �} . Correspondingly, the size of a confidence set is defined by the 
number of k belonging to the confidence set for a given nominal level �. 

Through all the simulations, we only consider a single change scenario 
since the multiple-change case can always be dealt with the binary seg-
mentation method. The data before the change point  k  are always generated 
from SN(0, 1, 1),  and the data after the change point are generated from SN(�, �, �) 
where � = {1, 1.5, 2} , � = {2, 2.5, 3} and � = {3, 3.5, 4} . We consider two sample 
sizes n = 50  and n = 100.  For the first sample size, we set up the changes occur-
ring at k = {10, 20, 25}. For the second sample size n = 100, we set up the changes 
occurring at k = {10, 20, 40, 50}.  The choices of  k  are approximately correspond-
ing to the scenarios that a chance occurs at the very beginning, in the middle and 
in the very end of data. We do not consider the changes occurring in the second 
half of the data, for example k = 30, 40 and k = 60, 80, 90, since the performances 
will be similar due to the symmetric property. In our simulations, we consider three 
different approaches to obtain the estimated change location k̂ to calculate the devi-
ance function D(k, x) given in (10). The first approach is simply based on the modi-
fied information criterion (MIC) given in (5). The second approach is based on the 
test statistic Sn which verifies statistically significance of the estimated change loca-
tion k̂ to avoid the impact of noise in the data. The third approach log-like method is 
by [8] which obtained k̂ by maximizing the profile likelihood function lprof (k) given 
in (9) for all possible values of k without considering the impact of the location of 
the change. One thousand simulations are conducted for each scenario.

Table 1 lists simulation results of coverage probabilities for n = 50 and various 
confidence levels 0.50, 0.90, 0.95 and 0.99. From the results, we observe that the 
MIC and Sn provide comparable coverage probabilities to the log-like method by 
[8], and in general, the MIC performs slightly better than the log-like method. As 
the increases in the differences among parameters, three methods perform sim-
ilarly and the coverage probabilities get closer to the confidence levels we set 
up. Table 2 provides the average of sizes of confidence sets. MIC and Sn methods 
have similar average sizes. However, both of them provide smaller average sizes 
of confidence sets than the ones by log-like method by [8], especially when the 
change occurs at the beginning (equivalently, in the end) of the data. For exam-
ple, for SN(1, 2, 3) case with k = 10 and � = 0.99, the average size of confidence 
sets by MIC method is 24.86 and is 24.68 by Sn method, comparing to 30.06 by 
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log-like method. For k = 25,  the average sizes of confidences are 15.38 for both 
MIC and Sn but 19.81 for log-like method. We also observe that, as the increases 
in differences among parameters, all three methods obtain similar average sizes 
of confidence sets. Figures 1 and 2 show the graphs of coverage probability and 
average size of confidence sets comparisons between  Sn  and the log-like, the 

Table 1  Comparisons of coverage probabilities, n = 50

� k = 10 k = 20 k = 25

MIC loglik S
n

MIC loglik S
n

MIC loglik S
n

SN(1, 2, 3) 0.50 0.40 0.37 0.35 0.40 0.37 0.32 0.41 0.39 0.35
0.90 0.73 0.72 0.70 0.68 0.65 0.63 0.69 0.66 0.62
0.95 0.79 0.78 0.77 0.76 0.71 0.69 0.74 0.73 0.70
0.99 0.91 0.89 0.89 0.89 0.86 0.83 0.86 0.86 0.82

SN(1.5, 2.5, 3.5) 0.50 0.43 0.41 0.40 0.44 0.43 0.40 0.46 0.44 0.38
0.90 0.76 0.74 0.73 0.78 0.75 0.71 0.80 0.80 0.74
0.95 0.83 0.81 0.79 0.87 0.85 0.81 0.88 0.87 0.83
0.99 0.94 0.93 0.91 0.96 0.94 0.92 0.96 0.95 0.93

SN(2, 3, 4) 0.50 0.49 0.47 0.46 0.49 0.45 0.49 0.50 0.49 0.45
0.90 0.82 0.81 0.78 0.90 0.80 0.82 0.90 0.89 0.81
0.95 0.89 0.88 0.85 0.93 0.85 0.88 0.95 0.94 0.89
0.99 0.96 0.96 0.95 0.99 0.93 0.96 0.99 0.99 0.96

Table 2  The comparisons of average sizes of confidence sets, n = 50

� k = 10 k = 20 k = 25

MIC loglik S
n

MIC loglik S
n

MIC loglik S
n

SN(1, 2, 3) 0.50 7.15 7.81 7.04 5.75 6.62 5.72 5.84 6.68 5.86
0.90 13.78 17.04 13.48 9.71 11.82 9.65 9.32 11.54 9.34
0.95 17.10 21.23 16.81 11.56 14.28 11.51 10.93 13.84 10.97
0.99 24.86 30.06 24.68 16.33 20.38 16.25 15.38 19.81 15.38

SN(1.5, 2.5, 3.5) 0.50 4.91 5.61 4.87 4.79 5.13 4.77 5.02 5.17 5.04
0.90 8.64 10.10 8.56 6.98 7.79 6.95 7.02 7.69 7.04
0.95 10.59 12.53 10.47 7.99 9.16 7.96 7.98 8.89 7.99
0.99 15.79 18.93 15.60 10.80 12.84 10.77 10.46 12.04 10.48

SN(2, 3, 4) 0.50 4.29 5.88 4.29 4.58 5.12 4.56 5.03 5.19 5.01
0.90 6.97 8.58 6.96 6.22 7.21 6.21 6.61 7.17 6.61
0.95 8.28 10.46 8.26 6.97 8.16 6.95 7.30 8.06 7.30
0.99 12.14 15.56 12.12 8.93 10.79 8.92 9.11 10.44 9.11
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likelihood method used in [8]. Since MIC and Sn perform very similarly, there-
fore, we only graph the curves for Sn and log-like methods.

Tables  3 and 4 list the simulation results for the coverage probabilities and 
average sizes of confidence sets for n = 100 by three approaches with various con-
fidence levels and change points. Same pattern is observed as the one observed 
from Tables 1 and 2. Figures 3 and 4 show the graphs for coverage probabilities 
and average sizes, respectively.

Fig. 1  The coverage probability comparison when all parameters change at various change-point posi-
tions, k = 10, 20, 25 and the sample size n = 50
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4  Application

In this section, we consider the stock returns for Brazilian and Chilean markets 
to apply the proposed method. The stock returns for both countries were recorded 
weekly from October 31, 1995, to October 31, 2000. These datasets were used in 
[2, 30]. Instead of using the data directly, we use the stock return ratio as recom-
mended in [30]. In both analyses, we also assume changes occurring in all three 
parameters simultaneously. The binary segmentation method proposed by [43] 

Fig. 2  The confidence set comparison when all three parameters change at various change-point posi-
tions, k = 10, 20, 25 and the sample size n = 50
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is used to detect possible multiple changes in the data. The stock return ratio is 
obtained by the following transformation:

The independence of the transformed data can be verified by the Portmanteau test. 
See [27, 30] for details.

Rt =
Pt+1 − Pt

Pt

, t = 1, 2,⋯ , n − 1.

Fig. 3  The coverage probability comparison when all parameters change at various change-point posi-
tions, k = 10, 20, 40, 50 and the sample size n = 100
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4.1  Brazilian Market Return Ratio Data

The Brazilian market return and return ratio data are graphed in Fig. 5.
We apply the proposed approach along with the binary segmentation procedure 

to detect multiple change points and construct corresponding confidence sets. 
MIC(n) = MIC(262) = −781.8335 > min1≤k<n MIC(k) = MIC(87) = −824.4513 
provides the estimation of the change location to be k̂ = 87. To confirm that 
it is a statistical significant change instead of being caused by noises, we 

Fig. 4  The confidence sets comparison when all three parameters change at various change-point loca-
tions, k = 10, 20, 40, 50 and the sample size n = 100
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calculate the test statistic Sn = 59.3228 associated with the critical value 
being   �2

0.95,3
= 7.815  and the p value being 8.202 × 10−13 . Therefore, we con-

firm that the change occurring at 87th location which corresponds to the 
change 88th location in the raw data is statistically significant. The maximum 
likelihood estimates (MLEs) of the parameters before the change point are 
(�̂�L, �̂�L, �̂�L) = (−0.0079, 0.0328, 0.8732), and the MLEs of the parameters are 
(�̂�R, �̂�R, �̂�R) = (−0.0006, 0.0611, 0.0022) after the change. Furthermore, the 95% 
confidence set for the change point is {71, 78,… , 90}.

We then divide the datasets into two subsequences that are below k (≤ 87) and 
above k (> 87) and repeat the above detection process to detect changes in these 
two subsequences. Such an iterative process stops till no further change points 
being found. We detect all possible change points being {19, 88, 144, 170, 240} . 
The confidence curves for all change-point estimates are shown in Figs. 6, 7 and 
8. 95% confidence sets are marked by red dashed lines. Comparing to the ones 
obtained by [30], we detect an additional change at 170th. These change points 
are shown in Fig. 9. Moreover, as suggested by one of the reviewers, we apply 
the normal model by Celine et al. [8] to the dataset to detect changes and obtain 
the change-point set {19, 88, 144, 192, 240}. It has the change point 192 different 
from our method and the one by Ngunkeng and Ning [30]. However, the violation 
of normality of the data was verified by Ngunkeng and Ning [30]. Therefore, the 
model based on the skew normal distribution is more appropriate than the one 
based on the normal distribution by Celine et  al. [8]. Consequently, the results 
obtained based on the skew normal model are more convincible.

Fig. 5  The weekly stock return and return ratio data for Brazil
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Fig. 6  Left: confidence curve for change point at k̂ = 87 and right: confidence curve for the first subset 
below (k ≤ 87) , the k̂ = 18

Fig. 7  Left: confidence curve for the second subset (k ≥ 88) after change point at k̂ = 143 and right: con-
fidence curve for the subset (k ≥ 144) , the k̂ = 169
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4.2  Chilean Market Return Ratio Data

The Chilean market return data and return ratio data are graphed in Fig. 10.
T h e 

MIC(n) = MIC(262) = −1015.536 > min1≤k<n MIC(k) = MIC(87) = −1051.643  . 
The estimated change location is k̂ = 112 . The test statistic Sn = 52.8011 with 

Fig. 8  Confidence curve for the subset (k ≥ 170) , the k̂ = 239

Fig. 9  The weekly stock return data for Brazil with change-point estimates
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the critical value �2
0.95,3

= 7.815  and the p value 2.0214 × 10−11 confirms that it 
is a statistically significant change. The corresponding change point in the data is 
113. The MLEs of the parameters are (�̂�L, �̂�L, �̂�L) = (−0.0253, 0.0323, 2.5638) and 

Fig. 10  The weekly stock return and return ratio data for Chile

Fig. 11  Left: confidence curve for change point at k̂ = 112 and right: confidence curve for the first subset 
below (k ≤ 112) , the change-point estimate k̂ = 60
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(�̂�R, �̂�R, �̂�R) = (−0.0004, 0.0402, 0.0018) before and after the change, respectively. 
With the binary segmentation method, we found all four change points in the Chil-
ean stock data. They are {61, 113, 170, 181} . Figures 11 and 12 show the confidence 
curves for all change-point estimates and 95% confidence sets. These change points 
are graphed in Chilean market data in Fig.  13. The findings from our proposed 

Fig. 12  Left: confidence curve for second subset (k ≥ 113) , the change-point estimate k̂ = 169 and right: 
confidence curve for the subsequence after the change point (k ≥ 170) , the change-point estimate k̂ = 180

Fig. 13  The weekly stock return data for Chile with change-point estimates
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approach are matched with the ones obtained by [30]. Same as the Brazilian data, 
we also apply the normal model by Celine et al. [8] to detect changes. We obtain 
the change-point set {7, 113, 170, 259} which has only the change 170 matching 
our result and the one by Ngunkeng and Ning [30]. The difference is also due to the 
violation of normality of the data.

5  Conclusion

In this paper, we propose a CD-based procedure incorporating the modified infor-
mation criterion for a skew normal change-point model. Different from other exist-
ing methods, the proposed method can provide confidence sets for the change point 
for a given nominal level instead of giving the point estimate only. Moreover, the 
proposed method considers the impact of the location of the change in terms of the 
model complexity. Consequently, it provides better coverage probability and com-
paratively smaller average sizes of confidence sets. Simulations are conducted under 
different scenarios which indicate the advantages of the proposed method. Two stock 
market data are given to illustrate the detecting procedure by the proposed method.
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