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Abstract
In this paper, a sequential change point detection method is developed to moni-
tor structural change in smoothly clipped absolute deviation (SCAD) penalized
quantile regression (SPQR) models. The asymptotic properties of the test statis-
tic are derived from the null and alternative hypotheses. In order to improve
the performance of the SPQRmethod, we propose a post-SCAD penalized quan-
tile regression estimator (P-SPQR) for high-dimensional data. We examined the
finite sample properties of the proposed methods via Monte Carlo studies under
different scenarios. A real data application is provided to demonstrate the effec-
tiveness of the method.
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1 INTRODUCTION

In recent years, quantile regression has been widely used in many areas due to its appealing properties contrast to the
traditional ordinary least square (OLS) regression model. The quantile regression method was introduced by Koenker
and Bassett (1978) as an alternative to the least square regression. This is considered as an extension of the least absolute
deviation (LAD) regression ormedian regression. Unlike the least squares, quantile regression has been designed tomodel
the changes in the conditional quantiles of the response variable concerning the changes in the covariates . TheOLSmodel
examines the importance of predictor𝑋 bymodeling the conditional expectations of the response variable𝑌 given𝑋while
quantile regression models attempt to estimate either the conditional median or other quantiles of the response variable.
The quantile regression producesmuchmore information about the conditional response distribution and provides amore
robust analysis of data. Unlike the OLS, the quantile regression estimates are not sensitive to outliers in the response
variable, see, for example, Davino, Furno, and Vistocco (2013) and Furno and Vistocco (2018). Therefore, the quantile
regression can be used when the distribution of random errors is heavy-tailed, or when there are outliers in the samples.
Change point detection for quantile regression has been extensively studied, see, for example, Bai (1996) proposed tests

to detect changes in quantile regression parameters as well as changes in variance. In addition, it can be used to detect
error heterogeneity in the data. Furno (2007) studied a likelihood ratio test based on quantile regressions. Wang and He
(2007) proposed a test for detecting differences in certain quantiles of the intensity distributions. Qu (2008) proposed
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different test statistics for structural change occurring in a prespecified quantile or across quantiles. Lagrange multiplier
test for structural breaks in quantile regressions was proposed by Furno (2012). Furno and Vistocco (2013) investigated
the test by Qu (2008) for structural breaks in quantile regressions. Aue, Cheung, Lee, and Zhong (2014) proposed a new
methodology to simultaneously (or separately) detect breakpoints, conduct variable selection, and estimate parameters
in quantile regression models. Zhang, Wang, and Zhu (2014) developed a new procedure for testing change points due
to a covariate threshold in regression quantiles. Their proposed test was based on the cumulative sum (CUSUM) of the
subgradient of the quantile objective function and required fitting the model only under the null hypothesis. Yet, very
few studies examine the use of quantile regression in sequential change point analysis. For instance, Zhou, Wang, and
Tang (2015) developed a method for sequential detection of structural changes in linear quantile regression models. They
established the asymptotic properties of the test statistics. Ciuperca (2017) proposed the test statistic for sequential change
point detection in a nonlinear quantilemodel. Ciuperca (2018) proposed a test statistic based on the adaptive least absolute
shrinkage and selection operator (LASSO) quantile method to detect a change in a linear model.
In real-world scenarios, we often dealwith a large number of explanatory variables. For example, genomics, finance, and

health care data have a large number of explanatory variables for each observation. In this paper, we study the sequential
change point method for quantile regression in high-dimensional covariates. Our approach enables us to analyze the
conditional distribution of the response variable at different quantile levels with large explanatory variables. To the best
of our knowledge, no previous studies investigate the use of a nonconvex penalized quantile regression model in the
sequential change point analysis.
This paper is organized as follows. In Section 2, the detection procedures based on smoothly clipped absolute deviation

(SCAD) penalized quantile regression (SPQR) and post-SCAD penalized quantile regression estimator (P-SPQR) are pro-
posed to detect changes sequentially under high-dimensional scenarios. Corresponding asymptotic results are established.
Simulations with various settings are conducted in Section 3 to investigate the performance of the proposed methods. The
proposed P-SPQR method is applied to a breast cancer gene expression data to illustrate the detection and estimation
process in Section 4. Some discussion is provided in Section 5.

2 METHODOLOGY

Let 𝜏 ∈ (0, 1) be fixed and known quantile of interest. Suppose we have a random sample {𝑌𝑖, 𝑥𝑖1, … , 𝑥𝑖𝑝}, 𝑖 = 1, … ,𝑚 and
a vector of independent identically distributed errors  = (1, … , 𝑚). Consider the model,

𝑌𝑖 = x⊤
𝑖
𝛽 + 𝑖 , 𝑖 = 1, … ,𝑚, (1)

where x𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑝)
⊤, 𝑖 = 1, … ,𝑚 and 𝛽 = (𝛽01, … , 𝛽0𝑝) is the vector of unknown quantile regression parameters at

the 𝜏th quantile level. Let 𝑋 = (x1,x2, … ,x𝑝)⊤ be the𝑚 × 𝑝 matrix of covariates, where x⊤
1
, … ,x⊤𝑚 are the rows of 𝑋 and

𝑋 = (𝑋1, … , 𝑋𝑝)where𝑋1,… , 𝑋𝑝 are the columns of𝑋. The 𝑖 is the error term satisfying 𝑃(𝑖 < 0|x𝑖) = 𝜏 for 𝑖 = 1, … ,𝑚.
The model (1) can be expressed in a similar manner by specifying the 𝜏th conditional quantile as

𝑄𝑦(𝜏|𝑋𝑖) = x⊤
𝑖
𝛽. (2)

The quantile coefficient 𝛽𝜏 can be estimated by

𝛽𝜏 = argmin
𝛽∈ℝ𝑃

𝑚∑
𝑖=1

𝜓𝜏
(
𝑌𝑖 − x⊤

𝑖
𝛽
)
, (3)

where

𝜓𝜏(𝑢) = 𝑢(𝜏 − 𝐼(𝑢 < 0)) (4)

is the quantile loss function introduced by Koenker and Bassett (1978). 𝐼(⋅) is the indicator function. When 𝜏 = 1∕2, it
corresponds to the median regression. However, too many explanatory variables in the model may cause the problem of
overfitting. To remedy this issue, one can consider using the penalized quantile regression estimator in (3) as suggested
in Koenker, Ng, and Portnoy (1994) and Koenker (2004).
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2.1 SCAD penalized quantile regression

Several penalty functions have been proposed in the literature, including 𝓁2 penalty used in ridge regression by Hoerl
and Kennard (1970), Lasso 𝓁1 penalty by Tibshirani (1996). Lasso has some rich properties which include shrinkage of the
coefficients toward zero for sufficiently large tuning parameters. However, the Lasso tends to produce biased estimates
for large coefficients. The studies conducted by Knight and Fu (2000), Fan and Li (2001), and Zou (2006) revealed that the
variable selection in Lasso is consistent under certain conditions, but not in general. Thus, the Lasso does not possess the
oracle property.
To overcome this issue, Fan and Li (2001) introduced a nonconvex penalty called smoothly clipped absolute deviation

(SCAD) and they suggested that it can be used for robust methods, such asmedian regression. The SCAD corresponds to a
quadratic spline function with knots at 𝜆 and 𝑎𝜆. As mentioned in Fan and Li (2001), the SCAD penalty function satisfies
three requirements for variable selection, including asymptotic unbiasedness, sparsity, and continuity of the estimated
parameters. It can estimate the zero coefficients as exactly zerowith the probability approaching one. Regularized quantile
regression with fixed 𝑝 was studied by Zou and Yuan (2008), Wu and Liu (2009), and Kai, Li, and Zou (2011). Wu and Liu
(2009) investigated the nonconvex penalty for penalized quantile regression, including the SCAD penalty for variable
selection, and showed that the SPQR satisfies the oracle property. Furthermore, the oracle property of nonconvex (SCAD
and minimax concave penalty (MCP)) penalized linear quantile regression is established by Wang, Wu, and Li (2012)
under high-dimensional settings. The SPQR model is given as

𝑄(𝛽, 𝜏) =

𝑚∑
𝑖=1

𝜓𝜏
(
𝑌𝑖 − x⊤

𝑖
𝛽
)2

+

𝑝∑
𝑗=1

𝑝𝜆𝑚(|𝛽𝑗|). (5)

The SPQR solves the following minimization problem:

𝛽𝜏𝑚 = argmin
𝛽∈ℝ𝑃

{
𝑚∑
𝑖=1

𝜓𝜏
(
𝑌𝑖 − x⊤

𝑖
𝛽
)2

+

𝑝∑
𝑗=1

𝑝𝜆𝑚(|𝛽𝑗|)
}

, (6)

where 𝑝𝜆𝑚(⋅) is the penalty function with tuning parameter 𝜆𝑚(≥ 0). The first derivative of the SCAD penalty function for
some 𝑎 > 2 and 𝛽 > 0 is given as follows:

𝑝′
𝜆𝑚
(𝛽) = 𝜆𝑚

{
𝐼(𝛽 ≤ 𝜆𝑚) +

(𝑎𝜆𝑚 − 𝛽)+

(𝑎 − 1)𝜆𝑚
𝐼(𝛽 > 𝜆𝑚)

}
. (7)

There are two unknown parameters 𝜆𝑚 and 𝑎. In practice, the best pair (𝜆𝑚, 𝑎) can be obtained by using a two-dimensional
grids search, for example, a cross-validationmethod. Fan and Li (2001) suggested 𝑎 = 3.7 is a good choice for various prob-
lems. In this research, 𝑎 is set to 3.7 to reduce the computational burden. The tuning parameter in the penalty function
controls the amount of shrinkage. The larger the value of 𝜆𝑚, the greater the amount of shrinkage. Like all other penalized
regression procedures, the performance of the penalized quantile regression depends on the selection of a tuning parame-
ter. The tuning parameter selectionmethods arewidely studied. Classicalmethods includingMallow’s𝐶𝑝 (Mallows, 1973),
Akaike information criterion (AIC; Akaike, 1974), Bayesian information criterion (BIC; Schwarz, 1978), cross-validation,
and generalized cross-validation (Golub, Heath, & Wahba, 1979) have been used for the model selection. In this research,
the tuning parameter is selected using cross-validation. Throughout this paper, we let 𝛽0 = (𝛽0,1, 𝛽0,2, … , 𝛽0,𝑝) be the true
parameter value and it is assumed to be sparse. Let𝕊0 = {𝛽0,𝑗 ≠ 0 ∶ 𝑗 = 1,… , 𝑝} be the index set of the nonzero coefficients
for the true parameter, where 𝛽0,𝑗 is the 𝑗th component of the parameter vector 𝛽0. Without loss of generality, we assume
that the first 𝑞 regression coefficients are nonzero and the remaining (𝑝 − 𝑞) regression coefficients are 0. We denote
the SCAD penalized quantile estimate by 𝛽𝜏𝑚. Let 𝕊∗ = {𝛽𝜏

𝑚,𝑗
≠ 0 ∶ 𝑗 = 1,… , 𝑝} be the index set of the SPQR estimator

calculated using the historical sample size𝑚, where 𝛽𝜏
𝑚,𝑗

is the 𝑗th element of the SPQR estimator 𝛽𝜏𝑚.
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2.2 Asymptotic properties

In this section, we establish the asymptotic properties of the proposed test statistic. We rewrite x⊤
𝑖
= (z⊤

𝑖
,w⊤

𝑖
), where

z𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑞)
⊤ and w𝑖 = (𝑥𝑖𝑞+1, … , 𝑥𝑖𝑝)

⊤. We take into account the situation where the covariates are fixed. To prove
the asymptotic properties, we impose following conditions:

C1. The model errors 𝑖 are independent and identically distributed (i.i.d.). Let 𝑓(⋅) and 𝐹(⋅) be the den-
sity function and the distribution function of 𝑖 , respectively, and 𝑓(⋅) uniformly bounded away from
zero.

C2. For all 𝑛 ∈ 𝑁, there exists a positive definite matrix ℂ such that lim𝑛→∞
1

𝑛

∑𝑛

𝑖=1
𝑋𝑖𝑋

⊤
𝑖
= ℂ. Also,

lim𝑛⟶∞
1

𝑛

∑𝑛

𝑖=1
‖𝑋𝑖‖4 < ∞ a.s, where ‖ ⋅ ‖ is the Euclidean norm.

C3. There exists a positive constant 𝐿 < ∞ such thatmax1≤𝑖≤𝑛,1≤𝑗≤𝑝 |𝑥𝑖𝑗| ≤ 𝐿, for all 𝑛 ∈ 𝑁.
C4. There exist positive constants 𝐾1 < 𝐾2 such that 𝐾1 ≤ 𝜆min(

1

𝑛
𝑋⊤
𝕊0
𝑋𝕊0

) ≤ 𝜆max(
1

𝑛
𝑋⊤
𝕊0
𝑋𝕊0

) ≤ 𝐾2, where 𝜆min and 𝜆max

are the smallest and largest eigenvalues of 1

𝑛
𝑋⊤
𝕊0
𝑋𝕊0

, respectively. We also assumed thatmax1≤𝑖≤𝑛 ‖z𝑖‖ = 𝑂𝑝(𝑞
1∕2).

C5. The true model dimension 𝑞 satisfies, 𝑞 = 𝑂(𝑛𝑐1) for some 0 ≤ 𝑐1 < 1∕2.
C6. There exists a constant 𝑏 > 0 such that

1

𝑚𝑠

‖‖‖‖‖‖
𝑚+𝑘∗𝑚+𝑚

𝑠∑
𝑖=𝑚+𝑘∗𝑚+1

x𝑖,𝕊0
{
𝐹(0) − 𝐹

(
x⊤
𝑖,𝕊1

𝛽1,𝕊1 − x⊤
𝑖,𝕊0

𝛽0,𝕊0
)}‖‖‖‖‖‖ > 𝑏,

where 𝑘∗𝑚 = 𝑂(𝑚𝑠), with the constant 𝑠 and for open-end procedure 𝑠 > 1 and for closed-end procedure 0 ≤ 𝑠 ≤ 1.

The (C1), (C2), and (C3) are used in the literature on high-dimensional quantile regression models, see, for example,
Koenker (2005),Wu and Liu (2009) andWang et al. (2012). The condition (C4) is similar toWang et al. (2012) and it requires
the design matrix corresponding to the true underlying model if it is well behaved. The condition (C5) on the true model
dimension is considered in Kim, Choi, and Oh (2008), Bühlmann, Kalisch, and Maathuis (2010), and Wang et al. (2012).
In particular, (C5) allows dimension growth depending on the sample size. The condition (C6) is used in Ciuperca (2018).
If the distribution function 𝐹 ∶  ⟶ [0, 1] Lipschitz on the set  and for any compact set on , there exists 𝑏1 > 0 not
depending on 𝑚 such that 𝑓(𝑥) > 𝑏1, then the condition (C6) holds. In real-life applications, these conditions may not
hold. For example, condition (C1) i.i.d. noise assumption may be violated and the condition (C4) could be violated for
correlated predictors.

2.3 Oracle property

Suppose that the conditions are satisfied. If 𝜆𝑚 ⟶ 0 and (𝑞∕𝑚)1∕2𝜆𝑚 ⟶ ∞ as 𝑚 ⟶ ∞, then the SPQR estimator 𝛽𝜏𝑚
satisfy the oracle property,

1. Sparsity property for 𝛽𝜏𝑚 happens in the historical data. Then,

𝑃(𝕊∗ = 𝕊0) = 1.

2. Asymptotic normality: (𝑞∕𝑚)1∕2(𝛽𝜏𝑚 − 𝛽0)𝕊0 ⟶ 𝑁(0, 𝜏(1 − 𝜏)ℂ−1
11
∕𝑓(0)2) in distribution as𝑚 ⟶ ∞whereℂ11 is top-

left 𝑞 × 𝑞 matrix of ℂ.

Suppose that conditions hold, by adopting theorem 2.4 in Wang et al. (2012), we can conclude that the SCAD penalized
quantile regression satisfies the oracle requirements for variable selection such as asymptotic unbiasedness, sparsity, and
continuity of the penalized estimator.
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2.4 Sequential change point problem

We study the change point problem with known prechange coefficients but unknown postchange parameters. Suppose
there exists a historical sample size𝑚 and at a given quantile level 𝜏 ∈ (0, 1) such that 𝛽𝜏

1
= ⋯ = 𝛽𝜏𝑚 = 𝛽0. This is called

a noncontamination assumption and used in Zhou et al. (2015) and Ciuperca (2017). Now the prechange parameters are
obtained using the historical sample data. Let 𝑇𝑚 be the monitoring horizon. After the historical sample size of𝑚, we are
interested in monitoring the process sequentially. The regression model after the historical observations𝑚 is,

𝑌𝑖 = x⊤
𝑖
𝛽 + 𝑖 , 𝑖 = 𝑚 + 1,𝑚 + 2,… . (8)

At each time point 𝑖, our goal is to test whether we have the same model as the first 𝑚 observations. Under the null
hypothesis, there is no change in the parameters,

𝐻0 ∶ 𝛽
𝜏
𝑖
= 𝛽0 ; for 𝑖 = 𝑚 + 1,𝑚 + 2,… .

Under the alternative hypothesis, we consider at an unknown time point 𝑘 the parameters changing from 𝛽0 to 𝛽1. There
exists 𝑘 ≥ 1 such that,

𝐻1 ∶

{
𝛽𝜏
𝑖
= 𝛽0 ; 𝑖 = 𝑚 + 1,𝑚 + 2,… ,𝑚 + 𝑘,

𝛽𝜏
𝑖
= 𝛽1 ; 𝑖 = 𝑚 + 𝑘 + 1,… ,𝑚 + 𝑇𝑚 and 𝛽0 ≠ 𝛽1,

)
where 𝛽1 = (𝛽1,1, 𝛽1,2, … , 𝛽1,𝑝) and it is unknown. Let 𝕊1 = {𝛽1,𝑗 ≠ 0 ∶ 𝑗 = 1,… , 𝑝} be the index set of the nonzero coeffi-
cients under the alternative hypothesis. Following Horváth, Huškova, Kokoszká, and Steinebach (2004) and Zhou et al.
(2015), our monitoring process can be defined based on the following CUSUM type process:

𝑆(𝑚, 𝑘) = 𝐽
−1∕2

𝑚,𝕊∗

𝑚+𝑘∑
𝑖=𝑚+1

x𝑖,𝕊∗𝜓𝜏
(
𝑌𝑖 − x⊤

𝑖,𝕊∗
𝛽𝜏
𝑚,𝕊∗

)
, 𝑘 = 1,… , 𝑇𝑚, (9)

where 𝐽𝑚,𝕊∗
= 𝜏(1 − 𝜏)𝐷𝑚,𝕊∗

with 𝐷𝑚,𝕊∗
=

1

𝑚

∑𝑚

𝑖=1
x𝑖,𝕊∗x

⊤
𝑖,𝕊∗

and 𝜓𝜏(𝑢) = 𝜏 − 𝐼(𝑢 < 0). The proposed CUSUM-based test
statistic for the monitoring process of the SCAD penalized quantile regression is given as

Ω(𝑚, 𝑘, 𝛾) =
‖𝑆(𝑚, 𝑘)‖∞
𝑔(𝑚, 𝑘, 𝛾)

, (10)

where 𝑔(𝑚, 𝑘, 𝛾) is called the normalizing function and defined as

𝑔(𝑚, 𝑘, 𝛾) = 𝑚1∕2

(
1 +

𝑘

𝑚

)(
𝑘

𝑘 + 𝑚

)𝛾

. (11)

The 𝛾 is called the control parameter. The choice of 𝛾 plays an important role in the monitoring process. The monitoring
process stops immediately for large control parameter 𝛾 ∈ [0, 1∕2). In particular, a larger value of 𝛾 is preferable if the
structural change happens soon after the historical sample size 𝑚. The closed- and open-end procedures are discussed
in Hušková and Kirch (2012) and Zhou et al. (2015). Under the open-end procedure, the monitoring process continues
possibly to infinity if no change point is detected. The open-end procedure is however not realistic in many situations.
We call a procedure closed-end when the monitoring process is stopped after a finite number of observations even if no
change is detected. Stopping time of the monitoring process based on the open-end procedure is defined as

Λ(𝑘) =

{
inf {𝑘 ≥ 1; 𝑆(𝑚, 𝑘)∕𝑔(𝑚, 𝑘, 𝛾) ≥ 𝑐𝛼(𝛾)},

∞ forall 𝑘 = 1, 2, … ,

)
(12)
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where 𝑐𝛼(𝛾) is the critical value. Suppose 𝑇𝑚 < ∞ with lim𝑚→∞ 𝑇𝑚∕𝑚 = 𝑁(> 0) with the possibility 𝑁 = ∞. Thus, the
open-end procedure has themonitoring boundary𝑇𝑚 = ∞. The critical value 𝑐𝛼(𝛾) is satisfying, under the null hypothesis,

lim
𝑚→∞

𝑃(Λ(𝑘) < ∞) = 𝛼, (13)

and under the alternative hypothesis,

lim
𝑚→∞

𝑃(Λ(𝑘) < ∞) = 1. (14)

Suppose 𝑇𝑚 < ∞, with 𝑇𝑚∕𝑚 ⟶ 𝑁 (𝑁 > 0) is defined as closed-end procedure and the stopping time is

Λ∗(𝑘) =

{
inf {𝑘 ≥ 1; 𝑆(𝑚, 𝑘)∕𝑔(𝑚, 𝑘, 𝛾) ≥ 𝑐∗𝛼(𝛾)},

𝑇𝑚 forall 𝑘 = 1,… , 𝑇𝑚,

)
(15)

where 𝑐∗𝛼(𝛾) is the critical value satisfying, under the null hypothesis,

lim
𝑚→∞

𝑃(Λ∗(𝑘) < ∞) = 𝛼, (16)

and under the alternative hypothesis,

lim
𝑚→∞

𝑃(Λ∗(𝑘) < ∞) = 1. (17)

Theorem 1. Under the assumptions (C1) to (C6) and for a given constant value of 𝛾 ∈ [0, 1∕2), if the null hypothesis holds,
we have

1. For the open-end procedure,

lim
𝑚→∞

𝑃

(
sup

1≤𝑘≤𝑇𝑚
𝑆(𝑚, 𝑘)

𝑔(𝑚, 𝑘, 𝛾)
≤ 𝑐𝛼(𝛾)

)
= 𝑃

(
sup
0≤𝑡≤1

‖𝑊(𝑡)‖∞
𝑡𝛾

≤ 𝑐𝛼(𝛾)

)
.

2. For the closed-end procedure,

lim
𝑚→∞

𝑃

(
sup

1≤𝑘≤𝑇𝑚
𝑆(𝑚, 𝑘)

𝑔(𝑚, 𝑘, 𝛾)
≤ 𝑐∗𝛼(𝛾)

)
= 𝑃

(
sup

0≤𝑡≤𝑁∕(𝑁+1)

‖𝑊(𝑡)‖∞
𝑡𝛾

≤ 𝑐∗𝛼(𝛾)

)
,

where {𝑊(𝑡), 0 ≤ 𝑡 < ∞} denotes a 𝓁-dimensional Wiener process, where, 𝓁 is the number of significant features in the
model based on the historical data, 𝛼 ∈ (0, 1), and the control parameter 0 ≤ 𝛾 < 1∕2.

The asymptotic critical values for the proposed test statistic can be obtained based on the Theorem 1 through simula-
tion. First, we generate a sequence of i.i.d 𝓁−dimensional random vector 𝑒𝑖 = (𝑒𝑖1, 𝑒𝑖2, … , 𝑒𝑖𝓁), where 𝑒𝑖𝑗 ∼ 𝑁(0, 1), 𝑗 =

1,… , 𝓁. Define 𝑊∗(𝑡) = 𝑀−1∕2∑𝑡𝑀

𝑖=1
𝑒𝑖 , where 𝑀 is a grid of 10, 000. In each iteration, we calculate the test statistic

max ‖𝑊∗(𝑡)∕𝑡𝛾‖∞ for both closed- and open-end procedures obtained over 𝑡 ∈ (0, 1) and 𝑡 ∈ (0,𝑁∕(𝑁 + 1)), respectively.
The critical value for a level-𝛼 test can be estimated by the (1 − 𝛼)th quantile of the test statistics.

Theorem 2. Under the assumptions and for a given constant value of 𝛾 ∈ [0, 1∕2), if the alternative hypothesis holds, we
have,

sup
1≤𝑘≤𝑇𝑚

𝑆(𝑚, 𝑘)

𝑔(𝑚, 𝑘, 𝛾)
⟶ ∞ as 𝑚 ⟶ ∞.

Proofs are given in the supplementary web material.
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2.5 Post-SCAD penalized quantile regression

In high-dimensional settings, the quantile regression model with SCAD penalized estimator is asymptotically unbiased.
Huang and Xie (2007) showed that under appropriate conditions, the SPQR is consistent for variable selection. However,
the direct use of this theorem will induce bias. To reduce the bias in the estimator, Belloni and Chernozhukov (2013)
suggested the so-called post-Lasso estimator. They showed that the OLS post-Lasso estimator performs at least as well as
the lasso under mild additional assumptions. As discussed earlier, the SPQR enjoys the oracle property thus, the P-SPQR
estimator becomes the oracle estimator as well. To improve the monitoring method, a modified test statistic based on the
P-SPQR estimator is proposed. The variable selection procedure plays an important role in a high-dimensional data set.
In the first step, we select the important features by regularizing quantile regression with a SCAD penalty function. Using
the significant predictors, let 𝛽∗𝜏,𝑚 be the quantile coefficient estimator based on the historical data and can be obtained
by minimizing

𝛽∗𝜏,𝑚 = argmin
𝛽∈ℝ𝓁′

𝑚∑
𝑖=1

𝜓𝜏
(
𝑌𝑖 − x⊤

𝑖,𝕊∗
𝛽
)
, (18)

where 𝜓𝜏(⋅) defined in (4) and 𝓁′ is the cardinality of the set 𝕊∗. Following Horváth et al. (2004) and Zhou et al. (2015) ,
the subgradient-based CUSUM-type process,

𝑆∗(𝑚, 𝑘) = 𝐽
−1∕2

𝑚,𝕊∗

𝑚+𝑘∑
𝑖=𝑚+1

x𝑖,𝕊∗𝜓𝜏
(
𝑌𝑖 − x⊤

𝑖,𝕊∗
𝛽∗𝜏,𝑚

)
, 𝑘 = 1,… , 𝑇𝑚, (19)

where 𝐽𝑚,𝕊∗ = 𝜏(1 − 𝜏)𝐷𝑚,𝕊∗ with 𝐷𝑚,𝕊∗ =
1

𝑚

∑𝑚

𝑖=1
x𝑖,𝕊∗x⊤𝑖,𝕊∗ and 𝜓𝜏(𝑢) = 𝜏 − 𝐼(𝑢 < 0). The modified CUSUM-based test

statistic for the monitoring process in P-SPQR model is given as

Ω∗(𝑚, 𝑘, 𝛾) =
‖𝑆∗(𝑚, 𝑘)‖∞
𝑔(𝑚, 𝑘, 𝛾)

. (20)

Stopping time for the open-end procedure,

Λmodif ied(𝑘) =

{
inf {𝑘 ≥ 1; 𝑆∗(𝑚, 𝑘)∕𝑔(𝑚, 𝑘, 𝛾) ≥ 𝑐𝛼(𝛾), },

∞ forall 𝑘 = 1, 2, … ,

)
(21)

and for the closed-end procedure,

Λ∗
modif ied

(𝑘) =

{
inf {𝑘 ≥ 1; 𝑆∗(𝑚, 𝑘)∕𝑔(𝑚, 𝑘, 𝛾) ≥ 𝑐∗𝛼(𝛾), },

𝑇𝑚 forall 𝑘 = 1,… , 𝑇𝑚,

)
(22)

where 𝑐𝛼(𝛾) and 𝑐∗𝛼(𝛾) are asymptotic the critical values for closed- and open-end procedures, respectively. For a given con-
stant 𝛾 ∈ [0, 1∕2), the 𝑔(𝑚, 𝑘, 𝛾) is called the normalizing function defined in (11). Furthermore, under the null hypothesis,

lim
𝑚→∞

𝑃(Λmodified(𝑘) < ∞) = 𝛼 and lim
𝑚→∞

𝑃(Λ∗
modified(𝑘) < ∞) = 𝛼, (23)

and under the alternative hypothesis,

lim
𝑚→∞

𝑃(Λmodified(𝑘) < ∞) = 1 and lim
𝑚→∞

𝑃(Λ∗
modified(𝑘) < ∞) = 1. (24)

Under 𝐻0, for the closed- and open-end procedure the test statistics given in (21) and (22) converges in distribution to
sup0≤𝑡<1

‖𝑊(𝑡)‖∞
𝑡𝛾

and sup0≤𝑡≤𝑁∕(𝑁+1)

‖𝑊(𝑡)‖∞
𝑡𝛾

, respectively.Under𝐻1, the test statisticsΩ∗(𝑚, 𝑘, 𝛾) converges in probability
to∞ as𝑚 ⟶ ∞.
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TABLE 1 Type I errors comparison for the closed- and open-end procedures of the SPQR and P-SPQR methods in Case 1 for various
values of 𝛾, the nominal significance level 𝛼 = .05 and 𝜏 = 0.5

Method Closed-end Open-end
𝒎 𝑵∕𝜸 0 0.25 0.45 0 0.25 0.45

SPQR 75 2 0.044 0.050 0.046 0.008 0.020 0.040
4 0.057 0.063 0.062 0.030 0.038 0.058
6 0.047 0.051 0.060 0.030 0.039 0.056
9 0.052 0.052 0.054 0.037 0.043 0.051

100 2 0.052 0.053 0.050 0.010 0.026 0.040
4 0.044 0.045 0.047 0.021 0.032 0.042
6 0.038 0.038 0.038 0.022 0.027 0.037
9 0.044 0.046 0.054 0.034 0.038 0.052

150 2 0.040 0.038 0.046 0.008 0.021 0.038
4 0.037 0.042 0.044 0.019 0.027 0.040
6 0.043 0.044 0.041 0.028 0.035 0.040
9 0.037 0.039 0.042 0.025 0.035 0.042

P-SPQR 75 2 0.058 0.060 0.052 0.012 0.030 0.043
4 0.073 0.075 0.062 0.033 0.051 0.057
6 0.070 0.065 0.056 0.043 0.054 0.052
9 0.062 0.064 0.058 0.049 0.050 0.056

100 2 0.064 0.065 0.050 0.016 0.034 0.045
4 0.072 0.070 0.059 0.032 0.046 0.056
6 0.067 0.064 0.054 0.040 0.048 0.052
9 0.075 0.074 0.062 0.056 0.060 0.061

150 2 0.058 0.062 0.058 0.015 0.029 0.049
4 0.056 0.056 0.053 0.026 0.040 0.045
6 0.068 0.068 0.048 0.042 0.051 0.045
9 0.058 0.062 0.056 0.044 0.049 0.054

3 SIMULATION STUDY

In this section, we conduct Monte Carlo simulations to investigate the performance of the proposed method. To evaluate
how well the proposed method performs, we consider three criteria that are commonly used to determine the goodness
of a sequential change point detection procedure. They are

1. Type I error rate: Close to the nominal level;
2. Power of the test: Preferably close to 1;
3. Detection time under the alternative hypothesis: Stop as soon as possible after a change begin noticed.

First, we evaluate the Type I errors of the proposed test. Under the null hypothesis, the data are obtained from the
model,

𝑦𝑖 = x⊤
𝑖
𝛽0 + 𝑖 , 𝑖 = 1, … ,𝑚 + 𝑇𝑚. (25)

The following cases are considered to calculate the Type I errors. In all cases, the true parameter vector 𝛽0 ∈

{1, 0, −1, 0, −15, 0, 0, 0, 0, 0}.

∙ Case 1: Homoskedastic errors
- 𝑋𝑖 ∼ 𝑁(0, 1) for all 𝑖 ∈ {1, … , 10}, and 𝑖 ∼ 𝑁(0, 1).

∙ Case 2: Heavy-tailed errors
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F IGURE 1 Type I errors comparison for the closed- and open-end procedures in Case 1 for the SPQR and P-SPQR methods

- 𝑋𝑖 ∼ Unif(0, 2) for all 𝑖 ∈ {1, … , 10}, and 𝑖 ∼ Cauchy(0, 2).
∙ Case 3: Heteroskedastic errors
- 𝑋𝑖 ∼ Unif(0, 2) for all 𝑖 ∈ {1, … , 10}, 𝑖 ∼ 𝑁(0, ℎ(𝑧𝑖)), where ℎ(𝑧) = 1 + 0.2 ∗ 𝑧, 𝑧 = 1,… ,𝑚 + 𝑇𝑚.

∙ Case 4: Skewed errors
- 𝑋𝑖 ∼ Unif(0, 2) for all 𝑖 ∈ {1, … , 10}, and 𝑖 ∼ 𝑆𝑁(0, 1, 3),
where the probability distribution function of a skew normal random variable 𝑋 is given by

𝑓𝑋(𝑥) =
2

𝜎
𝜙
(𝑥 − 𝜇

𝜎

)
Φ
(
𝜆
𝑥 − 𝜇

𝜎

)
, 𝑥 ∈ ℝ,

where 𝜙 and Φ are the probability distribution function and cumulative distribution function of the standard normal
distribution. We denote 𝑋 ∼ 𝑆𝑁(𝜇, 𝜎, 𝜆).

Next, we conduct the power analysis to illustrate the performance of the proposed test statistic. Under the null hypoth-
esis, the true parameter vector 𝛽0 ∈ {−1, 0, 1, 8, 1, 0, 0, 0, −5, 0} and under the alternative hypothesis, the parameter vector
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TABLE 2 Type I errors comparisons for the closed- and open-end procedures of the SPQR and P-SPQR methods in Case 2 for various
values of 𝛾, the nominal significance level 𝛼 = .05 and 𝜏 = {0.5, 0.7}

Closed-end Open-end
𝝉 Method 𝒎 𝑵∕𝜸 0 0.25 0.45 0 0.25 0.45
0.5 SPQR 200 2 0.170 0.165 0.120 0.067 0.096 0.107

4 0.229 0.213 0.163 0.160 0.174 0.154
6 0.203 0.203 0.152 0.156 0.174 0.145
9 0.243 0.226 0.165 0.210 0.203 0.163

400 2 0.362 0.341 0.243 0.175 0.227 0.224
4 0.396 0.377 0.289 0.285 0.320 0.279
6 0.437 0.404 0.318 0.348 0.364 0.309
9 0.442 0.412 0.331 0.393 0.390 0.327

P-SPQR 200 2 0.066 0.066 0.042 0.005 0.023 0.032
4 0.070 0.071 0.074 0.031 0.047 0.069
6 0.059 0.057 0.042 0.033 0.042 0.042
9 0.064 0.056 0.049 0.041 0.049 0.047

400 2 0.061 0.061 0.047 0.009 0.027 0.040
4 0.065 0.063 0.048 0.031 0.045 0.037
6 0.073 0.067 0.060 0.047 0.053 0.053
9 0.077 0.069 0.050 0.054 0.061 0.050

0.7 SPQR 200 2 0.386 0.358 0.295 0.191 0.264 0.269
4 0.486 0.463 0.369 0.365 0.402 0.356
6 0.502 0.482 0.403 0.421 0.442 0.394
9 0.529 0.505 0.416 0.482 0.482 0.405

400 2 0.721 0.705 0.587 0.493 0.590 0.560
4 0.792 0.776 0.690 0.719 0.741 0.679
6 0.824 0.805 0.716 0.763 0.772 0.710
9 0.850 0.832 0.737 0.809 0.813 0.731

P-SPQR 200 2 0.053 0.052 0.051 0.014 0.025 0.038
4 0.058 0.058 0.062 0.026 0.039 0.054
6 0.048 0.048 0.062 0.029 0.040 0.059
9 0.063 0.060 0.071 0.046 0.054 0.071

400 2 0.058 0.062 0.068 0.018 0.032 0.055
4 0.057 0.055 0.060 0.028 0.040 0.058
6 0.042 0.044 0.054 0.027 0.031 0.051
9 0.060 0.059 0.058 0.039 0.047 0.054

𝛽1 ∈ {0, −1, 0, 2, 0, 0, 1, 0, 0, −1}. We consider the two different distributions of the explanatory variables 𝑋1, 𝑋2, … , 𝑋10.
Under 𝐻0, 𝑋𝑖 for all 𝑖 ∈ {1, … , 10}∖{3, 4, 5} have uniform distribution Unif(0, 1) and 𝑋3 ∼ 𝑁(2, 1), 𝑋4 ∼ 𝑁(4, 1) and 𝑋5 ∼

𝑁(5, 1). The second distribution for the 𝑖th explanatory variable is𝑋𝑖 + 0.8 for all 𝑖 ∈ {1, … , 10}. Under the null hypothesis,
the model errors 𝑖 ∼ 𝑁(0, 1), and under the alternative hypothesis

∙ Case 1: 𝑖 ∼ 𝑁(0, 1).
∙ Case 2: 𝑖 ∼ Cauchy(0, 2).
∙ Case 3: 𝑖 ∼ 𝑁(0, ℎ(𝑧𝑖)), where ℎ(𝑧𝑖) = 1 + 0.2 ∗ 𝑧𝑖 , 𝑧𝑖 = 1, … ,𝑚 + 𝑇𝑚.
∙ Case 4: 𝑖 ∼ 𝑆𝑁(0, 1, 3).
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TABLE 3 Type I errors comparisons for the closed- and open-end procedures of the SPQR and P-SPQR methods in Case 3 for various
values of 𝛾, the nominal significance level 𝛼 = .05 and 𝜏 = {0.5, 0.7}

Closed-end Open-end
𝝉 Method 𝒎 𝑵∕𝜸 0 0.25 0.45 0 0.25 0.45
0.5 SPQR 200 2 0.221 0.209 0.165 0.150 0.199 0.193

4 0.292 0.267 0.202 0.281 0.302 0.266
6 0.273 0.265 0.210 0.286 0.293 0.251
9 0.330 0.312 0.212 0.335 0.334 0.271

400 2 0.460 0.437 0.349 0.342 0.428 0.396
4 0.529 0.504 0.417 0.496 0.529 0.483
6 0.560 0.535 0.428 0.564 0.567 0.496
9 0.570 0.538 0.452 0.609 0.602 0.515

P-SPQR 200 2 0.047 0.041 0.033 0.006 0.020 0.032
4 0.051 0.045 0.040 0.029 0.036 0.042
6 0.058 0.056 0.047 0.036 0.050 0.049
9 0.060 0.054 0.040 0.046 0.057 0.050

400 2 0.056 0.053 0.042 0.007 0.026 0.043
4 0.054 0.052 0.049 0.030 0.038 0.045
6 0.068 0.064 0.052 0.048 0.055 0.057
9 0.068 0.072 0.046 0.041 0.048 0.039

0.7 SPQR 200 2 0.491 0.479 0.366 0.334 0.411 0.408
4 0.581 0.560 0.479 0.545 0.577 0.531
6 0.580 0.554 0.457 0.584 0.599 0.545
9 0.629 0.602 0.514 0.648 0.643 0.570

400 2 0.823 0.810 0.720 0.692 0.751 0.741
4 0.873 0.857 0.814 0.837 0.851 0.821
6 0.914 0.898 0.845 0.887 0.892 0.857
9 0.914 0.906 0.852 0.907 0.909 0.871

P-SPQR 200 2 0.051 0.049 0.053 0.013 0.023 0.051
4 0.057 0.055 0.055 0.029 0.038 0.051
6 0.047 0.043 0.062 0.037 0.046 0.053
9 0.044 0.042 0.053 0.036 0.045 0.052

400 2 0.042 0.048 0.053 0.012 0.022 0.055
4 0.046 0.052 0.056 0.029 0.042 0.062
6 0.057 0.051 0.061 0.031 0.048 0.060
9 0.047 0.050 0.051 0.041 0.050 0.058

The second setting is used to compute the stopping time at different change point locations. For both power and stopping
time analysis, the data are generated in the following way:

𝑦𝑖 =

{
𝑥⊤
𝑖
𝛽0 + 𝑖 , 𝑖 = 1, … ,𝑚 + 𝑘∗ − 1,

(𝑥𝑖 + 𝛿)
⊤
𝛽1 + 𝑖 , 𝑖 = 𝑚 + 𝑘∗, … ,𝑚 + 𝑇𝑚 and 𝛿 > 0.

)
(26)

First, we evaluate the effect on the detection procedure of various control parameter values, considering 𝛾 ∈ {0, 0.25, 0.45}.
Type I errors of the open- and closed-end procedures in Case 1 at quantile level 𝜏 = 0.5 are summarized in Table 1 and
these results are graphed in Figure 1. The open-end procedure gives slightly deflated Type I errors and tends to increase as
𝑁 increases. In general, under the open-end procedure, the P-SPQR method provides better Type I errors than the SPQR
method. Besides, under the closed-end procedure, for all three 𝛾 values the SPQR method provides Type I errors close
to the nominal level, however, the P-SPQR method gives slightly inflated Type I errors. In practice, we recommend the
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TABLE 4 Type I errors comparison for the closed- and open-end procedures of the SPQR and P-SPQR methods in Case 4 for various
values of 𝛾, the nominal significance level 𝛼 = .05 and 𝜏 = {0.5, 0.7}

Closed-end Open-end
𝝉 Method 𝒎 𝑵∕𝜸 0 0.25 0.45 0 0.25 0.45
0.5 SPQR 200 2 0.327 0.314 0.245 0.177 0.230 0.225

4 0.416 0.402 0.317 0.332 0.355 0.307
6 0.401 0.387 0.309 0.346 0.347 0.301
9 0.444 0.421 0.331 0.400 0.389 0.326

400 2 0.620 0.590 0.497 0.418 0.508 0.480
4 0.673 0.651 0.569 0.579 0.608 0.554
6 0.709 0.687 0.597 0.651 0.658 0.592
9 0.727 0.705 0.615 0.695 0.686 0.610

P-SPQR 200 2 0.039 0.045 0.035 0.005 0.016 0.029
4 0.072 0.071 0.053 0.035 0.047 0.049
6 0.076 0.069 0.059 0.045 0.055 0.057
9 0.061 0.059 0.046 0.041 0.051 0.046

400 2 0.059 0.048 0.045 0.010 0.021 0.035
4 0.052 0.054 0.047 0.029 0.035 0.041
6 0.059 0.060 0.049 0.037 0.048 0.047
9 0.050 0.051 0.043 0.040 0.047 0.040

0.7 SPQR 200 2 0.594 0.571 0.497 0.401 0.470 0.470
4 0.694 0.680 0.589 0.600 0.624 0.572
6 0.724 0.712 0.626 0.663 0.674 0.617
9 0.758 0.738 0.659 0.724 0.720 0.656

400 2 0.868 0.854 0.802 0.742 0.797 0.786
4 0.923 0.915 0.878 0.891 0.897 0.868
6 0.941 0.931 0.898 0.920 0.921 0.895
9 0.949 0.941 0.902 0.935 0.931 0.900

P-SPQR 200 2 0.047 0.047 0.047 0.012 0.022 0.043
4 0.055 0.058 0.059 0.028 0.039 0.054
6 0.056 0.057 0.073 0.035 0.042 0.070
9 0.054 0.061 0.055 0.041 0.049 0.051

400 2 0.048 0.046 0.063 0.012 0.022 0.055
4 0.053 0.056 0.060 0.028 0.040 0.053
6 0.053 0.053 0.058 0.033 0.039 0.054
9 0.056 0.056 0.059 0.039 0.047 0.057

closed-end procedure for small𝑁(< 6), and large𝑁(≥ 6) both closed- and open-end procedures work in the samemanner.
This supports previous findings in linear quantile regression models by Zhou et al. (2015).
In Cases 2–4, we consider the different types of error distributions including heavy tails, heteroskedastic, and skewed

errors. We compute the Type I errors for both the closed- and open-end procedures at quantile levels 𝜏 ∈ {0.5, 0.7} with
the historical sample sizes𝑚 ∈ {200, 400}. The results are summarized in Tables 2–4, and they are compared in Figure 2.
The black dashed horizontal lines indicate the nominal level, 𝛼 = .05. It can be seen that the SPQR method gives larger
Type I errors in all cases compared to the P-SPQRmethod. This could be due to the fact that the P-SPQRmethod removes
penalization bias. Indeed, we notice that the Type I errors of the P-SPQR method are close to the nominal level for the
closed-end procedure, and produces slightly deflated Type I errors for the open-end procedure especially for small control
parameter values close to zero. In particular, for the P-SPQR method, when 𝑁 increases the Type I errors for the open-
end procedure continue to increase and become close to the nominal level in all cases. Thus, we recommend the P-SPQR
method for cases such as heavy tails, heteroskedastic, and skewed error distributions.
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F IGURE 2 Type I errors comparison for the closed- and open-end procedures in Cases 2–4 for P-SPQR and SPQR methods

We conduct a power analysis for both SPQR and P-SPQRmethods. The results are shown in Table 5. Figure 3 compares
the power of both procedures. In all cases, we observe that the P-SPQRmethod gives better power compared to the SPQR
method. Additional simulations have been carried out to evaluate power for different quantile levels such as 𝜏 = 0.7, 0.8.
The results are not reported here in detail. Interestingly, the P-SPQR method produces significantly higher power in all
these situations. It is important to note that regardless of method, the power tends to be lower when the change loca-
tion is farther away from the historical sample. Our findings confirm that the P-SPQR method performs better than the
SPQR method.
We compute a five-number summary of the stopping time for the closed- and open-end procedures. The results are

summarized in Table 6. In all cases, the processes are monitored from 𝑚 + 1 until time 9𝑚 observations. It can be seen
that the control parameter values close to 0.5 have the shortest detection delay time. In contrast, a smaller value of 𝛾 takes
a longer time to detect the structural change. In cases where structural changes occur immediately after the monitoring
scheme begins, larger values of 𝛾 would be preferred. Furthermore, smaller values of 𝛾 would be preferred, when the
change location is farther away from the historical sample. Next, we compare the estimated density of the stopping time
for various 𝛾 = {0, 0.25, 0.45} for the SPQR and P-SPQR methods. They are graphed in Figure 4. We observe a slightly
heavier tail for larger values of 𝛾, for example, 𝛾 = 0.45 has a slightly heavier tail than that of the monitoring process
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TABLE 5 The power comparison for the closed-end procedure with 𝜏 = 0.5, 𝑝 ∈ {100, 300}, 𝑘∗ ∈ {1, 25, 100}, 𝛼 = .05, and
𝛾 ∈ {0, 0.25, 0.45}

𝒌∗ = 𝟏 𝒌∗ = 𝟐𝟓 𝒌∗ = 𝟏𝟎𝟎

𝒎 → 100 300 100 300 100 300
Cases 𝜸 SPQR P-SPQR SPQR P-SPQR SPQR P-SPQR SPQR P-SPQR SPQR P-SPQR SPQR P-SPQR
Case 1 0.00 0.1956 0.8036 0.4380 0.9892 0.1792 0.7768 0.4232 0.9884 0.2008 0.6844 0.3980 0.9884

0.25 0.1852 0.7840 0.4156 0.9884 0.1792 0.7380 0.4004 0.9880 0.2396 0.6376 0.3704 0.9844
0.45 0.1332 0.6748 0.3004 0.9812 0.1344 0.6144 0.2740 0.9764 0.1984 0.4944 0.2352 0.9720

Case 2 0.00 0.1588 0.7680 0.3776 0.9864 0.1388 0.7296 0.3676 0.9864 0.1796 0.6332 0.3364 0.9832
0.25 0.1536 0.7420 0.3516 0.9852 0.1480 0.6964 0.3368 0.9852 0.2208 0.5840 0.3064 0.9784
0.45 0.1144 0.6248 0.2396 0.9740 0.1264 0.5644 0.2176 0.9716 0.1900 0.4508 0.1944 0.9600

Case 3 0.00 0.1956 0.8004 0.4381 0.9844 0.1808 0.7756 0.4241 0.9844 0.1888 0.6904 0.4017 0.9844
0.25 0.1824 0.7828 0.4141 0.9832 0.1764 0.7452 0.4037 0.9836 0.2216 0.6396 0.3757 0.9820
0.45 0.1360 0.6728 0.2992 0.9772 0.1392 0.6172 0.2831 0.9756 0.1856 0.4904 0.2555 0.9680

Case 4 0.00 0.1956 0.8036 0.4380 0.9892 0.1792 0.7768 0.4232 0.9884 0.2008 0.6844 0.3980 0.9884
0.25 0.1852 0.7840 0.4156 0.9884 0.1792 0.738 0.4004 0.9880 0.2396 0.6376 0.3700 0.9844
0.45 0.1332 0.6752 0.3004 0.9812 0.1344 0.6144 0.2744 0.9764 0.1984 0.4948 0.2356 0.9720

TABLE 6 Summary statistics of the detection time for both the closed- and open-end procedures in Case I with
𝜏 = 0.5,𝑚 = 100, 𝛼 = .05, and 𝛾 ∈ {0, 0.25, 0.45} at various change point locations

SPQR P-SPQR
Procedure 𝒌∗ 𝜸 Min Q1 Med Q3 Max Min Q1 Med Q3 Max
Open-end 1 0.00 97 232 323 461 896 43 158 296 382 868

0.25 25 121 196 318 792 23 103 181 353 896
0.45 1 14 53 229 871 1 63 139 286 900

25 0.00 126 270 427 536 896 59 208 306 485 895
0.25 17 74 257 430 755 15 174 267 455 883
0.45 1 6 16 46 661 1 116 234 393 897

100 0.00 67 121 160 544 897 64 336 502 658 898
0.25 17 45 71 108 832 15 297 451 624 899
0.45 1 7 19 59 114 1 236 396 627 892

Closed-end 1 0.00 62 166 263 381 966 40 131 204 319 866
0.25 23 107 186 294 894 14 95 165 284 886
0.45 1 17 56 239 850 1 61 137 279 873

25 0.00 86 249 373 517 866 52 185 273 433 897
0.25 16 101 235 441 895 14 152 241 399 882
0.45 1 6 17 51 648 1 114 230 393 895

100 0.00 61 122 303 698 822 54 320 488 661 899
0.25 16 47 77 103 897 14 280 436 621 896
0.45 1 7 24 64 114 1 231 388 599 883

with 𝛾 = 0. Also, Figure 4 shows that the SPQR method is more likely to falsely raised an alarm even before the actual
change occurred.

3.1 Large 𝒑

In high-dimensional settings, we only consider the P-SPQR method. We conduct simulations to study the finite sample
properties of the proposed P-SPQRmethod. A high-dimensional data set with (𝑝,𝑚), considering (100, 75) and (200, 100)
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F IGURE 3 Power comparisons for P-SPQR and SPQR methods in Cases 1–4 under the closed-end procedure

are generated. We consider the following two settings. In the first setting, the nonzero components of the true param-
eters are 𝛽0,𝑗 = 0 for 𝑗 = {1, … , 𝑝}∖{1, 3, 5, 41, 52} where 𝑝 ∈ {100, 200}. 𝛽0,1 = 1, 𝛽0,3 = 15, 𝛽0,5 = −20, 𝛽0,41 = −2, and
𝛽0,52 = −8. The explanatory variables 𝑋𝑖 ∼ Unif(0, 1) for 𝑖 = {1, … , 𝑝}∖{3, 5, 74}, where 𝑋3 ∼ 𝑁(2, 1), 𝑋5 ∼ 𝑁(5, 1) and
𝑋74 ∼ 𝑁(8, 1). The model errors 𝑖 are generated from the following distributions:

∙ Case 1: 𝑖 ∼ 𝑁(0, 1).
∙ Case 2: 𝑖 ∼ Cauchy(0, 2).
∙ Case 3: 𝑖 ∼ 𝑁(0, ℎ(𝑧𝑖)), where ℎ(𝑧𝑖) = 1 + 0.2 ∗ 𝑧𝑖 , 𝑧𝑖 = 1, … ,𝑚 + 𝑇𝑚.
∙ Case 4: 𝑖 ∼ 𝑆𝑁(0, 1, 3).

In the second setting, under 𝐻0, the regression coefficients are 𝛽0,1 = 1, 𝛽0,3 = 15, 𝛽0,5 = −2, 𝛽0,6 = −13, 𝛽0,41 =

−2, 𝛽0,77 = −8, and 𝛽0,𝑗 = 0 for all 𝑗 ∈ {1, … , 𝑝}∖{1, 3, 5, 8, 41, 77} with 𝑝 ∈ {100, 200}. Under the alternative
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F IGURE 4 Estimated densities of the stopping time for both methods in Case 1 when𝑚 = 100,𝜏 = 0.5,𝑘∗ ∈ {1, 25, 100}, and𝛾 ∈
{0, 0.25, 0.45}

F IGURE 5 Type I errors comparison for the P-SPQR method in Cases 1–4 under the closed- and open-end procedures

hypothesis, the regression coefficients are 𝛽1,2 = −1, 𝛽1,4 = 2, 𝛽1,7 = 1, 𝛽1,10 = −10. 𝛽1,51 = −8, 𝛽1,83 = −5, and 𝛽1,𝑗 = 0

for all 𝑗 ∈ {1, … , 𝑝}∖{2, 4, 7, 10, 51, 83}with 𝑝 ∈ {100, 200}. We consider two different distributions of the explanatory vari-
ables. Under the null hypothesis, the explanatory variables 𝑋𝑖 ∼ Unif(0, 1). Under the alternative hypothesis, the 𝑖th
explanatory variable is transformed to 𝑋𝑖 + 5 and model errors 𝑖 ∼ 𝑁(0, 1) for 𝑖 ∈ {1, … , 𝑝}.
The first setting is used to calculate Type I errors. The data are generated from (25). Table 7 summarizes the Type I

errors for the closed- and open-end procedures, and they are graphed in Figure 5. The various control parameter values,
considering 𝛾 ∈ {0, 0.25, 0.45} and the different size of the historical observations 𝑚 ∈ {75, 100, 200} are considered. The
results are based on 1, 000 iterations. Type I errors based on the closed-end procedure are always higher than Type I errors
computed from the open-end procedure. For small values of 𝛾, Type I errors of the open-end procedure are comparatively
low, however, they are improved as𝑁 increases. When the open-end procedure is considered, smaller𝑁 provides slightly
deflated Type I errors. Thus, in the cases of smaller 𝑁, we suggest that the use of larger values of 𝛾 close to 0.5. Also, in
contrast to the open-end procedure, Type I errors of the closed-end procedure are stable across 𝑁 in all cases.
The second setting is used to evaluate the power of the test and stopping time calculations. The data are generated from

(26). First, we carry out the power analysis of the proposed P-SPQR procedure for high-dimensional data. Different change
point locations have been considered under each pair of (𝑝,𝑚). The results are shown in Table 8. Based on Table 8, it is
clear that the power tends to decrease as the change point location farther away from the historical sample. Furthermore,
in all cases, themonitoring schemewith 𝛾 = 0 has higher power than that of themonitoring process with 𝛾 close to 0.5, for
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TABLE 7 Type I errors for the P-SPQR method in Cases 1–4 under the closed- and open-end procedures for various values of 𝛾, the
nominal significance level 𝛼 = .05, and 𝜏 = 0.5

Closed-end Open-end
Cases (𝒑,𝒎) 𝑵∕𝜸 0 0.25 0.45 0 0.25 0.45
Case 1 (100,75) 2 0.090 0.096 0.070 0.012 0.034 0.052

4 0.086 0.092 0.062 0.044 0.060 0.058
6 0.072 0.070 0.064 0.046 0.054 0.062
9 0.060 0.066 0.046 0.042 0.052 0.046

(200,100) 2 0.082 0.072 0.080 0.032 0.048 0.070
4 0.118 0.108 0.092 0.070 0.086 0.088
6 0.084 0.092 0.072 0.060 0.068 0.070
9 0.092 0.098 0.072 0.076 0.086 0.072

Case 2 (100,75) 2 0.072 0.072 0.042 0.016 0.034 0.036
4 0.084 0.068 0.070 0.040 0.054 0.058
6 0.090 0.086 0.066 0.056 0.066 0.062
9 0.090 0.076 0.062 0.064 0.062 0.062

(200,100) 2 0.100 0.098 0.084 0.034 0.056 0.068
4 0.082 0.080 0.080 0.054 0.058 0.074
6 0.068 0.068 0.070 0.044 0.056 0.066
9 0.090 0.082 0.064 0.068 0.078 0.064

Case 3 (100,75) 2 0.064 0.078 0.052 0.006 0.022 0.040
4 0.056 0.052 0.060 0.030 0.040 0.058
6 0.062 0.056 0.068 0.040 0.050 0.066
9 0.042 0.044 0.034 0.032 0.034 0.034

(200,100) 2 0.068 0.064 0.054 0.020 0.040 0.050
4 0.096 0.094 0.062 0.044 0.056 0.060
6 0.066 0.072 0.064 0.042 0.056 0.060
9 0.076 0.060 0.042 0.044 0.048 0.042

Case 4 (100,75) 2 0.058 0.062 0.038 0.016 0.026 0.036
4 0.066 0.070 0.058 0.032 0.048 0.050
6 0.064 0.070 0.052 0.044 0.056 0.044
9 0.078 0.080 0.054 0.066 0.070 0.052

(200,100) 2 0.080 0.082 0.062 0.034 0.048 0.052
4 0.062 0.070 0.050 0.038 0.050 0.050
6 0.070 0.066 0.068 0.048 0.056 0.068
9 0.080 0.076 0.044 0.064 0.064 0.042

instance, 𝛾 = 0.45. For different error distributions, the power of the test performs similarly which indicates that the pro-
posed P-SPQRmethod is robust to the error distribution. Figure 6 provides the comparison for various error distributions
and change locations for a given pair of (𝑝,𝑚) for the P-SPQR method.
Next, we compute the five-number summary of the stopping time for the P-SPQR method. The results are recorded

in Table 9. Figure 7 shows the estimated density of the stopping time for the P-SPQR method in Case 1. Although in
high-dimensional data, we still see that the previous findings for small 𝑝 continue to hold.

4 APPLICATION

In this section, we apply the proposed P-SPQR method to breast cancer gene expression data from The Cancer Genome
Atlas (TCGA) project. The data contain expression measurements of 17,814 genes from 536 patients. All expression mea-
surements are recorded on the log scale. The response variable 𝑦 is the gene expression measurement for BRCA1 and
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TABLE 8 Power comparisons for P-SPQR method in Cases 1–4 under the closed-end procedure for different pairs of (𝑝,𝑚), 𝜏 = 0.5,
𝛾 ∈ {0, 0.25, 0.45}, and various change point locations

(𝒑,𝒎) (𝟏𝟎𝟎, 𝟕𝟓) (𝟐𝟎𝟎, 𝟏𝟎𝟎)

Cases 𝜸/𝒌∗ 1 25 75 1 50 100
Case 1 0.00 0.980 0.974 0.942 0.928 0.894 0.872

0.25 0.980 0.966 0.918 0.918 0.872 0.836
0.45 0.948 0.896 0.778 0.818 0.738 0.650

Case 2 0.00 0.982 0.970 0.934 0.914 0.884 0.858
0.25 0.982 0.960 0.918 0.906 0.858 0.824
0.45 0.938 0.870 0.754 0.808 0.714 0.628

Case 3 0.00 0.980 0.974 0.942 0.928 0.894 0.872
0.25 0.980 0.966 0.918 0.918 0.872 0.836
0.45 0.948 0.896 0.778 0.818 0.738 0.650

Case 4 0.00 0.980 0.974 0.942 0.928 0.894 0.872
0.25 0.980 0.966 0.918 0.918 0.872 0.836
0.45 0.948 0.896 0.778 0.818 0.738 0.650

TABLE 9 Summary statistics of the detection time for the P-SPQR method in Case I with 𝜏 = 0.5, 𝛼 = .05, 𝛾 ∈ {0, 0.25, 0.45}, and
(𝑝,𝑚) = {(100, 75), (200, 100)} at various change point locations

(𝟏𝟎𝟎, 𝟕𝟓) (𝟐𝟎𝟎, 𝟏𝟎𝟎)

Procedure 𝒌∗ 𝜸 Min Q1 Med Q3 Max Min Q1 Med Q3 Max
Open-end 1 0.00 21 78 109 163 645 40 117 185 322 896

0.25 9 51 79 128 669 11 77 130 244 888
0.45 4 36 66 130 635 3 48 98 211 896

25 0.00 43 124 169 235 665 42 154 232 363 895
0.25 22 104 150 213 672 18 120 184 316 898
0.45 5 102 161 252 674 3 100 169 289 893

50 0.00 48 176 231 302 675 47 197 290 431 896
0.25 22 157 213 292 666 18 157 248 393 899
0.45 5 169 249 367 674 3 143 254 420 893

Closed-end 1 0.00 21 68 96 137 659 36 105 163 280 896
0.25 9 46 69 113 597 11 72 123 220 898
0.45 4 34 63 122 632 3 46 97 204 874

25 0.00 41 112 151 205 670 33 138 206 327 898
0.25 22 96 137 198 675 18 114 170 298 900
0.45 5 100 158 247 664 3 98 166 290 890

50 0.00 47 156 207 271 641 29 175 263 391 900
0.25 22 147 201 273 663 18 147 233 379 899
0.45 5 166 246 359 672 3 140 245 403 897

the explanatory variables are gene expression measurements for remaining genes. The response variable 𝑦 is graphed in
Figure 8. Since the dimensions are very high, we use the univariate filter method for the preprocessing step. This approach
selects features according to certain criteria, for example, the correlation coefficient. Pearson correlation coefficient is used
to measure the linear relationship between two variables and cannot be used when the association is nonlinear.
Székely, Rizzo, andBakirov (2007) introduced distance correlation (DC)which is a newmeasure of dependence between

random vectors. Let 𝑋 and 𝑌 be the two random vectors. The characteristic functions of 𝑋 and 𝑌 are denoted as 𝑓𝑋 and
𝑓𝑌 , respectively, and let the joint characteristic function of 𝑋 and 𝑌 be 𝑓𝑋,𝑌 . The distance covariance (dCov) between
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F IGURE 6 Power comparisons for the P-SPQR method in Cases 1-4 under the closed-end procedure

random vectors 𝑋 and 𝑌 with finite first moments is the nonnegative number defined as

dCov2(𝑋, 𝑌) = ∫
ℝ𝑝+𝑑

‖‖𝑓𝑋,𝑌(𝑡, 𝑠) − 𝑓𝑋(𝑡)𝑓𝑌(𝑠)‖‖2𝑤(𝑡, 𝑠) 𝑑𝑡 𝑑𝑠,
where𝑝 and 𝑑 are the dimensions of𝑋 and𝑌, respectively, and𝑤(𝑡, 𝑠) is a choice of weight and theweight function chosen
to be

𝑤(𝑡, 𝑠) =
(
𝑐𝑝𝑐𝑞‖𝑡‖1+𝑝𝑝 ‖𝑠‖1+𝑞𝑞

)−1
,

with 𝑐𝑑 = 𝜋(1+𝑑)∕2∕Γ((1 + 𝑑)∕2). The DC between 𝑋 and 𝑌 with finite first moments is defined as

DC = dCorr(𝑋, 𝑌) =
dCov(𝑋, 𝑌)√

dCov(𝑋, 𝑋) dCov(𝑌, 𝑌)
.
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F IGURE 7 Estimated density of the stopping time for𝛼 = .05, 𝛾 ∈ {0, 0.25, 0.45}, and various pairs of(𝑝,𝑚)for the P-SPQR method in
Case 1

Theoretical properties of the DC are established by Székely et al. (2007). When compared to the Pearson correlation coef-
ficient , the DC satisfies the following properties:

1. 0 ≤ dCorr(𝑋, 𝑌) ≤ 1,
2. The dCorr(𝑋, 𝑌) = 0 if and only if 𝑋 and 𝑌 are independent,
3. dCorr(𝑋, 𝑌) = dCorr(𝑌, 𝑋).

Li, Zhong, and Zhu (2012) addressed the use of DC as a feature screening technique and its capacity to pick the very
relevant features in comparison with the Pearson correlation coefficient. Furthermore, the DC is more effective than the
Pearson correlation coefficient in the presence of a nonlinear association between 𝑋 and 𝑌. Thus, in the univariate filter
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F IGURE 8 The gene expression measurement for BRCA1 of the breast cancer gene expression data

method, we use DC as ameasure to identify the features that are influenced in predicting the response variable. In the first
step, we compute the DC between the response variable 𝑦 and each predictor variable 𝑋𝑖 . For this analysis, the minimum
DC is set to 0.50. Therefore, if the predictor variables above the threshold value of 0.50 are retained and those below 0.50
are discarded. In particular, at DC = 0.50, about 1,003 of 17,814 features are selected to build a model.
First, from the graph above we observe that there are no changes in the first 51 observations. We then apply the

regular log-likelihood method to verify our guess which turns out there is no change in the first 51 observations. The
residuals are assumed to be i.i.d. normal distribution with mean 0 and variance 𝜎2 = Var(𝑖|𝑋). Therefore, the first
𝑚 = 40 observations are considered as the historical sample size. The significant explanatory variables are chosen using
the SCAD penalized quantile regression at different quantile levels of interest, considering 𝜏 ∈ {0.5, 0.75}. Our pro-
posed P-SPQR method is used to monitor the future incoming observations sequentially with the control parameter
value 𝛾 = 0. When quantile 𝜏 = 0.5 our method detects 21 change points. The corresponding multiple change points are
{92, 104, 111, 118, 121, 134, 169, 181, 186, 199, 203, 209, 363, 393, 412, 420, 443, 458, 495, 513, 532}. However, we detect only
four change points at the quantile level 𝜏 = 0.75, they are {52, 64, 76, 84}. This could be due to a lack of information avail-
able at the upper tail than at the median. All these change points are plotted in Figure 9.
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F IGURE 9 Change points at quantile level: (a)𝜏 = 0.5and (b)𝜏 = 0.75

Furthermore, we compare our proposed method with LASSO-penalized quantile regression model for high-
dimensional data. The 𝓁1-penalized quantile regression is defined as

𝑄(𝛽, 𝜏) =

𝑚∑
𝑖=1

𝜓𝜏
(
𝑌𝑖 − x⊤

𝑖
𝛽
)2

+ 𝜆𝑚

𝑝∑
𝑗=1

|𝛽𝑗|.
The 𝓁1-penalized quantile regression solves the following minimization problem:

𝛽𝜏
𝑚,𝓁1

= argmin
𝛽∈ℝ𝑃

{ 𝑚∑
𝑖=1

𝜓𝜏
(
𝑌𝑖 − x⊤

𝑖
𝛽
)2

+ 𝜆𝑚

𝑝∑
𝑗=1

|𝛽𝑗|},



RATNASINGAM and NING 597

where 𝜆𝑚(≥ 0) is called the tuning parameter. We adopt 10-fold cross-validation to select appropriate values for the tuning
parameter 𝜆𝑚. Then we monitor the structural change with the 𝓁1-penalized quantile regression sequentially, however,
no change point is detected. It shows that our method performs well and thus its superiority in terms of detecting struc-
tural changes is well established. Other existing methods including, Zhou et al. (2015) and Horváth et al. (2004) are not
applicable since they are entirely univariate, therefore, are not suitable for high-dimensional scenarios.

5 CONCLUSION

In this paper, we propose the SPQR procedure for the sequential change point detection for high-dimensional data.
The SPQR performs variable selection and estimation simultaneously. Moreover, to improve the SPQR-based monitor-
ing method, we develop the P-SPQR method for high-dimensional data. The asymptotic properties of the test-statistic
under null and alternative hypotheses have been derived. Simulations are conducted to illustrate the performance of
both methods with different historical sample sizes, various error distributions, and three different control parameters.
The results show that the P-SPQRmethod reflects much better robustness in various error distributions including heavy-
tailed, heteroskedastic, and skewed error distributions. Furthermore, in all cases, the P-SPQRmethod shows higher power
than the SPQR method. As expected, in both methods the power tends to decrease when the change location is farther
away from the historical sample size, however the power of the test increases as the historical sample size increases. The
closed-end procedure is preferable for small𝑁(< 6), and both closed- and open-end procedures behave similarly for large
𝑁(≥ 6). Simulation results indicate that larger control parameter values appear to detect the structural change much
faster, whereas smaller control parameter values contribute more delays of detection. So for situations where we suspect
or expect the true structural changemay occur immediately after the historical sample, we suggest a larger control param-
eter and vice versa. We have only considered the P-SPQRmethod for high-dimensional data. Interestingly, we notice that
all of the previous findings for small 𝑝 continue to hold. Our proposed P-SPQR method is applied to a breast cancer gene
expression data to locate multiple change points sequentially. Although we believe our work has achieved good results in
sequential change point analysis for high-dimensional data, it is worth mentioning that our method can also be extended
to study how correlated predictors affect the response in sequential change point analysis. This is an important topic for
future research.
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